
Atomic Simulation

A program was written to simulate, in two dimensions, the interaction of idealized atoms. 

The atoms experience and exert only Van der Waals forces.  These forces are estimated 

using the Lennard-Jones potential:

V(r)  =  4  ( (σ/r)∊ 12 - (σ/r)6 ) [1]

where r is the distance between two atoms, and , σ are chosen heuristically so as to be in∊  

agreement with experimental evidence.  To find the force in terms of the distance between 

two atoms we take the differential with respect to r.:

F(r) =  d/dr(  4  ( (σ/r)∊ 12 - (σ/r)6 )  )

=  4  ∊ σ6 ( d/dr( σ6 r-12 - r-6 ) )

=  4  ∊ σ6 ( -12 σ6 r-13 + 6 r-7 )

=  24  ∊ σ6 r-7 ( 1 - 2 σ6 r-6 )

To find the effect one of the atoms involved, we find the change in velocity along the line 

between the two atoms to be the force divided by the mass.:

dr/dt  =  F/m

This calculation produces the vector which drives the update() function of the simulation.

The simulation begins by populating a "cell"  with the simulated atoms.  The cell  is  a  

rectangular(usually square) two-dimensional space in which each atom is represented by a 

uniquely colored circle.  When displayed, the representation of the cell can be "reflected" into 

what appear to be adjoining areas of space occupied by identical atoms.  Each atom in the  

cell  feels  not  only  the  effects  of  the  presence  of  other  atoms  in  the  cell,  but  those  in  

"reflection" cells as well, whether or not they are displayed.  The cell repeats itself, as if it  

represented a nano-scale doughnut-shaped universe.  The first atom to be place in the cell  

can be placed anywhere, but subsequent atoms must not be placed on top of existing atoms. 

A new atom will only be added to the cell if it can be placed at least an atom's width away 

from any other atom.  Otherwise, such a placement could result in a potential energy too high 

for the simulation to handle.  It would be akin to a high energy collision.

Besides infinity, there is another "zero" point for the distance between any two atoms.  It  

is the point when the above force equation reaches zero.:

F(r)  =  0 =  24  ∊ σ6 r-7 ( 1 - 2 σ6 r-6 )

24  ∊ σ6 r-7 ( 2 σ6 r-6 ) = 24  ∊ σ6 r-7 



2 σ6 r-6 =  1

r6  =  1/(2 σ6)

r   =  1/(21/6 σ)   .89/σ≐

To avoid unnecessary complications when setting up a scenario, we will only add atoms 

that are at least  .89/σ away from any other atom.  This distance will also be used as the 

radius of each atom.

To improve computation time, an approximation will be used when computing the force 

that two atoms place on each other.  Any two atoms that are at least 2.5σ apart from each 

other will be regarded as infinitely far, i.e.: they will exert zero force on each other.  At this 

distance the force is approximately 1/60th its maximum value [1].  The value is exactly:

F( 2.5σ ) =  24  σ∊ 6 r-7 ( 1 - 2 σ6 r-6 )

=  24  σ∊ 6 ( 2.5σ )-7 ( 1 - 2 σ6 ( 2.5σ )-6 )

=  60  ( 1 - .008192 ) /σ ∊

  60  / σ≐ ∊

Any  two  atoms  at  a  distance  of  at  least  2.5σ  will  exert  no  force  on  each  other  in  the 

simulation.  In order to maintain continuity in F(r), an offset equal to 60 /σ will be subtracted∊  

from the force applied by any two atoms closer than 2.5σ.

8.2  Approach to Equilibrium

8.2.a A simulation was begin with 16 atoms and Lx = 6.  The timestep was set to .0001 

because it was found that higher timesteps allowed atoms to encroach upon one another in 

such a way as to cause huge variation in the potential energy, often causing spikes greater  

than the computer's maxfloat.  Below is a screenshot of the simulation at initialization.  This  

screenshot shows only the main cell.  Some atoms are partially off the edge.  The partially  

obscured part  would theoretically  be protruding from the other  side of  the cell  (wrapping 

around), but is not shown because of complications in the graphing code.  When reflections 

are shown this problem is not an important factor because all atomic motion between cells 

appears fluid and continuous.



The figure below left  shows the 16 atoms randomly distributed at the beginning of  a 

simulation.  Each atom is uniquely colored to make the simulation easier to follow visually. 

The trajectories of the atoms are relatively fluid.  They become more fluid if fewer atoms are  

simulated.

The simulation  is  able  to  display  the  cell  alongside  a  somewhat  arbitrary  number  of  

reflections.  Each atom feels the effect of each other atom +3 reflections (whether displayed 

or not).  Typically, only one of those four is close enough to exert  any appreciable force. 

Besides those 4, each other reflection is merely a display feature.  Simulations have been 

done with up to 40X40 reflections.  The actual simulation is not altered in any way by the 

presence of these reflections.  Another 16-atom simulation is shown below (right) with 15 

reflections (all sets of reflections are configured in squares -- 16 total cells, or 9, 4, 1, 25, etc.).

The  total  energy  was  computed  at  each  time  interval  and  was  observed  to  be 

approximately conserved.  The following is the potential and kinetic energy of the system 

during one simulation.  On the left  is time (running down).   Next is the average potential  

energy so far (using the LJ-potential).  Next is the average kinetic energy so far (using cv 2, 

where c is some coefficient to put the kinetic and potential energies in the same order of  

magnitude).   Next  is  the  sum of  the two (the  total  energy),  and finally  is  the number  of  

timesteps completed so far.



time potential kinetic total steps

9.999900        -1.526787       0.283056        -1.243731       2 
9.999800        -2.046015       0.285324        -1.760691       3 
9.999700        -2.473798       0.287664        -2.186134       4 
9.999600        -2.888921       0.289965        -2.598956       5 
9.999500        -3.211174       0.292131        -2.919044       6 
9.999400        -3.312547       0.294079        -3.018468       7 
9.999300        -3.043300       0.295739        -2.747561       8 
9.999200        -2.455369       0.297057        -2.158312       9 
9.999100        -1.997987       0.298008        -1.699979       10 
...

8.689500        -1.854071       3.879727        2.025656        13106 
8.689400        -1.847987       3.892473        2.044487        13107 
8.689300        -1.847731       3.905226        2.057495        13108 
8.689200        -1.847317       3.917972        2.070654        13109 
8.689100        -1.845445       3.930728        2.085282        13110 
8.689000        -1.844205       3.942972        2.098767        13111 
8.688900        -1.834018       3.948967        2.114949        13112 
8.688800        -1.832934       3.954949        2.122015        13113 
8.688700        -1.832707       3.960928        2.128222        13114 
8.688600        -1.832683       3.966906        2.134223        13115 
8.688500        -1.832591       3.972883        2.140292        13116 

As shown, each of the energies and the total energy is not perfectly constant, but it stays 

relatively constant -- at least enough for the simulation to look natural.

Below is a graph of each type of energy as a function of time:

The above shows the average potential, kinetic, and total energy as a function of time (in  

seconds), for a cell of size 6X6, containing 16 atoms with originally random positions and 



velocities,  where  each  datapoint  comes  from one  timestep,  and  each  timestep  is  .0001 

seconds.  The term "seconds," is used loosely here as the simulation happens in a unitless 

environment.

A relative equilibrium is reached by about .05 seconds, however, it is striking that the 

kinetic energy is so constant relative to the potential energy.  The "total" energy is merely the 

sum of the other two.

8.2.b

This simulation differs from 8.2.a only in the size of the cell, and the fact that a new set of  

16 randomly distributed atoms was generated.  The cell in this run is 12X6.:

The question is,  does the system go toward equilibrium or  chaos?,  and how does it 

compare to the previous example?

The graph below shows the average potential, kinetic, and total energy over the first .1  

seconds.:

The graph above shows the energies of 16 atoms in a cell of size 12X6, with originally  



random positions and velocities.  A relative equilibrium appears to be reached after approx. .

04 seconds.

Now let us examine the behavior of such a system over a longer timeperiod, such as 2 

seconds.:

As can be seen in the graph above, the system definitely appears to find an equilibrium. 

At least during the simulated 2 seconds the system does not exhibit chaotic behavior.

8.2.c. Now let us examine the number of atoms in the left half of the 12X6 sized cell.  Let  

n(t) be the number of atoms in the left half at time t.



The above graph shows that the system never approaches an equilibrium.  The average 

is consistently 8, while the values of n(t) continue to vary mostly between 6 and 10.  The 

deviation from 8 does not appear to change over time.

Next  the  same experiment  was attempted with  64  atoms,  but  it  was not  possible  to 

randomly place 64 atoms in the cell  without having collisions in the initial  conditions.  54  

atoms were successfully place within the cell.  Below we see the results of n(t).

A shorter time period was used because the high number of atoms makes each timestep 

expensive.  As can be seen above, the larger system shows the same pattern of consistent  

deviation from the mean (25.5, if one allows a non-integer mean).  The difference is that the  

deviation is relatively less than in the previous run.  n(t) appears to stay mostly within the 

range 24 to 27, a range of 3 compared with a mean of 25.5 is less significant than a range of  

4 compared to a mean of 8.



8.3  Sensitivity to initial conditions

8.3.a. A simulation was run with these initial conditions:

x           y           x'    y'  

    5 5/11 10 0
    5 15/11 10 0
    5 25/11 10 0
    5 35/11 10 0
    5 45/11 10 0
    5 55/11 10 0
    5 65/11 10 0
    5 75/11 10 0
    5 85/11 10 0
    5 95/11 10 0
    5 105/11 10 0

A velocity of 10 was used (as opposed to the suggested velocity in the text) because of 

the much smaller timestep being used (.0001).

The simulation appears to begin in a state of equilibrium with all atoms moving in parallel 

at the same speed.  However, almost immediately, tiny perturbations appear in the y-axis  

motion of several atoms.  After approximately .023 seconds, these perturbations evolve into a 

sudden rupture of the clean line of atoms.:



  The rupture sends the atoms in all  directions,  very quickly  erasing any order  that  was 

previously there.  The screenshot above was snapped just as the rupture began.  The non-

spherical shape of some atoms is an irrelevant artifact of the screenshot capturing process.

Does the system come to an equilibrium at some point after the rupture?

It  is  easy  to  see  from  the  above  graph  that  the  system  does  indeed  come  to  an 

equilibrium.  The initial conditions were extremely lopsided in favor of potential energy over 

kinetic.  For that reason it was not stable.  In a real system the same thing would be true 

--order devolves into chaos.  Such a configuration is not stable.  The initial conditions in the  

simulation were not stable for two reasons:  1. lopsided toward potential,  and 2. roundoff 

errors.  If there had never been any roundoff errors, then it is likely that each atom would 

never alter its trajectory, resulting in a "stable" system.  To be truly stable, the state of a set of  

atoms  should  return  after  any  minor  perturbation.   A stable  configuration  can  also  be 

considered a global minimum, as opposed to a local minimum.

8.3.b. A simulation was run with these initial conditions:

x           y           x'    y'  

    5 5/11 10 0
    5 15/11 10 0
    5 25/11 10 0
    5 35/11 10 0
    5 45/11 10 0
    5 55/11 9.9 .1



    5 65/11 10 0
    5 75/11 10 0
    5 85/11 10 0
    5 95/11 10 0
    5 105/11 10 0

The atoms begin  with  what  appears  to  be  the  same configuration  as  in  8.3.a.   The 

difference is that the locally stable initial conditions decay more rapidly into entropy.  The 

perturbations begin almost immediately, as before.  The rupture occurs, however, after a mere 

.0045 seconds.

If 8.3.a represented an unstable configuration, this run represents a less stable one.  It  

was inevitable that both configurations would devolve into entropy.

8.3.c The simulation from 8.3.a was run until .023 seconds and then reversed to see if the 

atoms would return to their original configuration.  They did indeed return to their previous 

configuration, but only in passing.  The moved into a line and didn't stop.  The set of atoms 

never did return to all sharing a velocity vector.

The simulation was run again, this time stopping at .022 seconds.  The reversal again put  

them back in the line configuration.  The atoms appeared to all have the same velocity vector 

for two or three timesteps.

This simulation was run again with a reversal at .021 seconds.  The results were the 

same as  for  .022s.   Reversing  at  .02  seconds made the  atoms line  up for  a  few more 

timesteps.  Finally, the simulation was reversed after only .01 seconds.  The atoms remained 

lined  up  going  in  the  reverse  direction  for  approximately  .014  seconds  before  the  line 

ruptured.

One more test was run using a smaller timestep of .00001.  In this scenario the line of  

atoms ruptured after .0194 seconds.  The simulation was reversed at this point.  The atoms 

did return to the line, but only held the configuration for about .00055 seconds.

8.3.d. These conditions were covered thoroughly in 8.3.c.



8.3.e. It is highly improbable that the computed trajectories are the same as the would-be 

true trajectories.  These atoms are all idealized, and our calculations do not incorporate any 

quantum mechanics.  What can be said, however, is that true trajectories of atoms in nature 

"look like" the simulated ones.  This fact was referred to earlier when it was mentioned that  

atoms in  nature,  like  the simulated ones,  will  not  remain long in  a  configuration  of  local  

stability, i.e.: a state which is highly sensitive to perturbations.  A state that is stable in nature  

should be stable in the simulation as well.

8.4.  Tests of the Verlet algorithm

8.4.a. As was mentioned earlier,  a timestep greater than .0001 showed instability under 

some conditions.  Therefore, only timesteps less than .0001 will be compared.  Specifically,  

we will compare the ability of the system to conserve total energy over a given amount of  

time.  Due to the small timesteps being used, only .2 seconds will  be simulated for each  

timestep.  Since each configuration begins with a random distribution of atoms, the energy at 

the beginning will be discarded.  The final average total energy will be compared with the 

average  total  energy  after  .1  seconds.   This  difference,  ΔE,  will  be  found  for  several 

timesteps.  These tests were run using a common file to set the initial conditions.  The results 

are in the chart below.

timestep                         ΔE  

.0001 0.140474202517

.000095 0.174189516177

.00009 0.111766784195

.000085 0.0918405748973

.00008 0.530936690316

.000075 0.0146528192887

.00007 0.350148387792

.000065 0.0013863317875

.00006 0.197912491535



.000055 0.0343959021192

.00005 0.0121546426578

.000045 0.0139387086095

.00004 0.177327293246

.000035 0.0780376354455

.00003 0.0930706934455

.000025 0.180603398907

.00002 0.287946522817

.000015 0.161136139403

.00001 0.150275094578

.000005 0.111724465512

The graph below shows this data visually.:

These data appears to show no strong correlation between timestep size and the ability 

of the simulation to conserve total energy.  Perhaps a correlation would have been found at 

timesteps greater than .0001.  Such timesteps were not investigated because of their inherent 

instability.

8.4.b. The ability of the simulator to conserve momentum is shown in two graphs below -- 

one for each dimension.



Apparently, this simulator does a very good job of preserving momentum.  As can be seen 

above, the total linear momentum in the x-axis is 900, and -110 in the y-axis.  These values  

are maintained during the simulation.

8.4.c. The total energy was plotted against time, and a line was fitted to the data minimizing 

the RMS error.



Using a timestep of  .0001, the slope,  or "drift"  is  -3.79,  with a standard deviation, or 

"noise" of .01124.  Results were found for other timesteps as well.   Below is drift  plotted 

against timestep.:



Next, below is noise against timestep.:

As the timestep increases it appears that the noise also increases.  This is as would be 

expected.   The unexpected correlation,  however,  was that  there was less drift  for  higher 

timesteps.

8.4.d. The Runge-Kutta method was used to perform a simulation with 16 atoms that had 

already reached somewhat of  an equilibrium.   Below is  a chart  of  the total  energy as a  

function of time with a timestep of .0001.

Already it  can be seen that  RK brings an improvement  to  the  simulator.   The same 

starting conditions were used to perform the same simulation for a number of other timesteps:



timestep                         drift                          deviation         

0.000100 -3.9332e-01 5.1930e-04 
0.000095 -3.9338e-01 5.1926e-04 
0.000090 -3.9344e-01 5.1921e-04 
0.000085 -3.9349e-01 5.1917e-04 
0.000080 -3.9354e-01 5.1912e-04 
0.000075 -3.9359e-01 5.1907e-04 
0.000070 -3.9364e-01 5.1902e-04 
0.000065 -3.9368e-01 5.1897e-04 
0.000060 -3.9372e-01 5.1891e-04 
0.000055 -3.9376e-01 5.1886e-04 
0.000050 -3.9380e-01 5.1880e-04 
0.000045 -3.9384e-01 5.1875e-04 
0.000040 -3.9387e-01 5.1869e-04 
0.000035 -3.9390e-01 5.1863e-04 
0.000030 -3.9393e-01 5.1857e-04 
0.000025 -3.9396e-01 5.1852e-04 
0.000020 -3.9398e-01 5.1846e-04 
0.000015 -3.9401e-01 5.1840e-04 
0.000010 -3.9403e-01 5.1834e-04 
0.000005 -3.9405e-01 5.1828e-04 

  
These data can be seen visually below:



The Runge-Kutta method (RK) produces simulations with much less drift and noise.  The 

drift  with RK is an order of  magnitude smaller,  and the noise is two orders of magnitude 

smaller.   Here  we  also  see  that  there  is  a  strong  correlation  between  drift,  noise,  and 

timestep.  Decreasing the timestep lowers the noise and drift, as would be expected.

Using RK, it was possible to run with a larger timestep (.001) without experiencing the 

instabilities mentioned earlier.  The total energy was also maintained better than it was under 

much smaller timesteps without RK.  The drift was only -.580 with noise=.001269 when using 

dt=.001.



8.5  Qualitative properties of a liquid and a gas

8.5.a The temperature of the simulated system will  be found by the following equation, 

applicable to two dimensions:

T  =  K / Nk

where K is the total  kinetic energy, N is the number of  particles, and k is the Boltzmann 

constant, which we will take to be 1 in our unitless world.

The pressure will be found similarly, from the equation:

P V  =  N R T

where we will take the constant R to be 1.

A simulation was run with 16 atoms in a volume of size 6X6.  On the left is a graph of the 

kinetic energy over a timeperiod of 1s with a timestep of .0001.  On the right is a graph of the 

time-averaged temperature over that same period.

The average temperature over this time period is 0.146039, which results in a pressure 

(according to the ideal gas law), of:  P =  N T / V  =  16*T/36  =  0.064906.

To compensate for interactions between the atoms, the equation is ammended by adding 

the virial term to the definition of P.:

P =  N T / V  +  ( ∑ij rij Fij ) / (d V)

where:

rij  =  distance vector between atoms i and j



Fij  =  force vector between atoms i and j

d  =  number of dimensions

V  =  volume

Below is a graph of the virial  term over the same time period.  The value has been  

normalized by a constant to be within the same magnitude as the temperature.

Then adding both terms we get a graph of pressure including the virial term.:



8.5.b. This step was effectively already done because the initialization file used in 8.5.a was 

generated by randomly distributing 16 atoms and saving their configuration once they had 

reached a relative equilibrium as understood by monitoring the drift of the total energy.  The 

equilibrium was not perfect, but it was as good as this system appears to be able to maintain.

8.5.c. The  simulation  of  8.5.a  was  rerun  with  a  slight  alteration.   All  distances  were 

increased by a factor of 2.  I chose to increase the chamber size instead of decreasing it  

because of the unpredictable effects of putting two atoms too close together.  It is expected 

that  such a  change should  reduce  the  pressure  considerably.   All  other  factors  included 

velocity were held constant.

Below left  is  a graph of the temperature of this modified system over the same time 

period.  Below right is a graph of the pressure of this modified system over the same time 

period.

As can be seen above, the pressure is slightly more than half of the original pressure.



8.8.  Two Dimensional Lattices

A simulation was performed using a triangular configuration of 16 atoms reflected into a 

total of nine cells.  Considering a radius of 0.44544 and a central cell of size 3.635 X 3.125, 

this configuration had a density of 1.4084 atoms per unit volume.

At first it was difficult to place all of the atoms without causing collisions in the initial state. 

A small epsilon was gradually modulated until a high density was reached while still having a 

small gap of .012 between each atom.

Below is the potential energy per particle as a function of time.  The simulation was run 

over a period of 1 second with a timestep of .0001.



A similar simulation was done with a square lattice.  16 atoms were placed in a cell sized 

3.564 X 3.564.  In this case, the denisty of the lattice is 1.2595 atoms per unit volume.  Below 

is a screenshot of this simulation near the start.

This scenario was not stable like the triangular lattice.  A number of such simulations were 

run and the square lattice invariably decays into a triangular lattice.  Below is a screenshot of  

the simulation just after the square lattice began to break up.



After  a  very  short  time of  appearing  somewhat  chaotic,  the  simulation  settles  into  a 

triangular lattice, as shown below.

Below is the potential energy per particle as a function of time.  The simulation was run 

over a period of 1 second with a timestep of .00001.  The reason for the smaller timestep was 

the  greater  propensity  for  extreme behavior.   Although  both  of  the  lattices  share  a  high 

potential energy, the instability of the square lattice results in a likelihood that some atoms will  

eventually have a high kinetic energy -- a situation that can produce numbers higher than the 

system maxfloat.



The potential  energy per particle is significantly less in the square lattice, an obvious 

result of having each atom as close as possible to four others, as opposed to six other atoms.

Besides the obvious point  that the triangular lattice appears more dense,  the density 

numbers above show that it was indeed more dense, assuming that both configurations were 

packed as densely as reasonably possible.

8.9.  Solid state and melting

8.9.a. A triangular lattice was started with 16 atoms in a cell sized  4.01 X 3.46.  Each atom 

started with a velocity of zero.  The simulation was run for 1 second with a timestep of .0001.  

The following is the total energy of the system during that time period.  The mean energy 

was .732 ±.002 (std. dev.).



Below is the temperature over the same time period.  The mean temperature was .0166 ±4e-

5.:

Below is the pressure over the same time period.  The mean pressure was .019 ±4e-5.:

The simulation shows that the system does indeed remain a solid.  The simulation was 

run for more than 50 seconds, and each atom stayed in the same place in the lattice.



8.9.b. Each particle was given a random velocity.  The velocities were between -100 and 

+100, and then the system was allowed to stabilize for 1 second.  A snapshot was taken at  

that point and this snapshot was the initial configuration for this simulation.  The graph below 

shows the total energy over a period of one second with a timestep of .0001.  The mean of 

the total energy was .948 ±.018

The  graph  below  shows  the  temperature  over  the  same  time  period.   The  mean 

temperature was .01673 ±4e-5.    The fitted line appears to be askew.  It is not clear why the  

angle of the line doesn't match the intuitive slope of the graph, but this angle was determined 

to have the lowest RMS error after modulating the slope and intercept significantly with finer 

and finer tuning.  Numerous attempts were made to debug the line fitting feature.



Below is a graph of the pressure in this system over the same time period.  The same angle  

can be seen in this graph as well.  The mean pressure was .01924 ±4e-5.

Surprisingly, the atoms do indeed remain a solid -- each atom remains in its place in the 

triangular lattice.  It appears to be a remarkably stable configuration.

8.9.c. In this simulation the kinetic energy was increased.  The same initial conditions were 

used, but the velocity of each atom was scaled up before starting.

In the first simulation, the velocity was doubled in both dimensions.  This results in a 4-

fold  increase  in  the  kinetic  energy.   Remarkably,  the  atoms  remain  in  a  solid,  but  their 

trajectories  look  much  more  chaotic.   Despite  the  extra  activity,  there  is  still  a  visually 

identifiable triangular lattice, and each atom remains in place.

The second simulation multiplied the initial veloicities by 3 -- same qualititative result with 

a slightly higher level of excitation.

The third simulation, multiplying the velocities by 4, however, very quickly devolved into  

something non-solid.  From the beginning the atoms looked extremely agitated.



At .0115 seconds their agitation reached a breaking point.:

Then, at .0117 seconds their lattice totally disolved and liquefaction resulted.:

As can be seen, the drawing mechanism was not able to keep up with the moving atoms.  

The white circles are what the animation code uses to erase the previous location of an atom. 

These chaotic trajectories do not appear to be a simulation of melting.  Perhaps it  is 

similar to a highly pressurized gas, or plasma(not likely - as each atom is being modeled as a  

whole).   It is more likely that at these energy levels the simulation is no longer valid.



8.9.d.  The mean potential energy for the solid being simulated is approximately .73 ±.06.

The  below graph  shows the  relationship  between  E(T)-E(0)  and  temperature  T.   This  is  

another situation where the fitted line doesn't match where I would intuitively draw the line.  I  

can't explain it except to say that I check the fitting process several times and keep getting  

this same result.

It appears that there is no strong relationship between E(T)-E(0) and temperature.



Below is a graph of the pressure plotted against T.

This exact correlation comes from the fact that Pressure relates directly to temperature.

Below is a graph of the total energy over the time period of the simulation.  The drift was 

approximately 3.7105.

Below is a graph of the temperature of the same time period.  The drift was approximately

.024975.

The heat capacity is therefore 3.7105 / .024975 = - 148.6



8.9.e. The density of the system was decreased by increasing the size of the cell slightly 

until  melting occured.   A number  of  different  simulations were run.   Melting was visually 

confirmed once the density reached approximately .85 atoms per unit of volume.  Melting 

occurs  when  there  is  no  identifiable  consistent  lattice.   There  may  be  moments  were 

something that appears to be a lattice appears, but no configuration remains.

CONCLUSION

The system outlined above proved to  be highly  flexible  and useful  for  running many 

disparate tests.  This method of modeling appears to be robust under many conditions and is  

visually  very  interesting.   The  fact  that  quantities  such  as  kinetic  energy,  potential,  and 

temperature, can be monitored with such precision means that these simulated atoms can be 

studied in ways that real atoms never could be.
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Appendix:  CODE

The below code was originally stored is several files but is listed in two files here for simplicity.  

The first file is "atom.py," the main file used to run simulations.  The second set of code is 

everything else that was used to either support the simulation or plot graphs, etc.

The  numerous  experiments  with  slight  alterations  were  sometimes  performed  by 

commenting out alternate versions of commands instead of creating new functions.  This cut 

down on the overall length of the code, but it should be noted that most commented out lines  

were uncommented at some point.

  FILE:  atom.py :

##  Globals
global keFactor
keFactor = 13e-7

##################
##  Atom CLASS  ##
##################

class Atom:
    ''' Models a single atom  '''
    # Constructor
    def __init__(self, cell, x, y, xDot=0, yDot=0, m=1):
        self.cell = cell
        self.radius = cell.radius
        self.x = x
        self.y = y
        if self.x > cell.Lx:
            print 'ERROR: x too big:',self.x
            raise Exception('xTooLarge')
        if self.y > cell.Lx:
            print 'ERROR: y too big:',self.y
            raise Exception('yTooLarge')

        self.xDot = xDot
        self.yDot = yDot
        self.m = m
        self.color = randint(50,255), randint(50,255), randint(50,255)    # random color
        self.pot = 0    # potential energy
        self.force = [0,0]

    def animate(self):
        if self.x < self.cell.Lx and self.y < self.cell.Lx:
            self.circle = cell.anim.mkCircle([self.x, self.y], self.radius, self.color)
        else:
            self.cell.disown(self)

    def delete(self):
        cell.anim.mkCircle([self.x, self.y], self.radius, [255,255,255])
        self.cell.disown(self)

    def distance(self, other):
        d = 0
        d += (other.y - self.y)**2
        d += (other.x - self.x)**2
        dist = math.sqrt(d)



        return dist

    def distanceXY(self, x, y):

        d = 0
        d += (y - self.y)**2
        d += (x - self.x)**2
        dist = math.sqrt(d)

        return dist

    def get_potential(self, other):
        ''' Compute a unitless potential energy between two atoms '''
        pot = 0
        r = self.distance(other)
        if r > self.cell.distant:
            pass
        else:
            r6 = r**6
            pot = (1/r6 - 1)/ r6

        self.pot += pot
        other.pot += pot

    def get_xyDot(self, x, y, a=None, b=None):
        ''' Compute x,y Dot from the derivative of the LJ potential '''
        r = None
        if a==None or b==None:
            a = self.x
            b = self.y

        r = distance([x,y], [a,b])

        if r > self.cell.distant:
            rDot = 0
        elif r == 0:
            return 0,0
        else:
            r6 = r**6
            rDot = (self.cell.coeff/(r*r6)) * (1 - 2*self.cell.sigma6/r6) - self.cell.offset

        theta = math.atan2(y-b, x-a)
        delta_xDot = rDot*math.cos(theta)
        delta_yDot = rDot*math.sin(theta)
        return delta_xDot, delta_yDot

    def getAll_xyDot(self, x, y, atoms=None):
        ''' Compute x,y Dot from the derivative of the LJ potential '''
        if atoms == None:
            atoms = self.cell.atoms
        g = 10000 * self.cell.step
        delta_xDot = 0
        delta_yDot = 0
        for a in atoms:
            if a.x > self.x:
                Lx = -self.cell.Lx
            else:
                Lx = self.cell.Lx
            if a.y > self.y:
                Ly = -self.cell.Ly
            else:
                Ly = self.cell.Ly

            d_xDot, d_yDot = self.get_xyDot(a.x, a.y, x, y)
            delta_xDot += d_xDot
            delta_yDot += d_yDot
            d_xDot, d_yDot = self.get_xyDot(a.x+Lx, a.y, x, y)
            delta_xDot += d_xDot
            delta_yDot += d_yDot



            d_xDot, d_yDot = self.get_xyDot(a.x, a.y+Ly, x, y)
            delta_xDot += d_xDot
            delta_yDot += d_yDot
            d_xDot, d_yDot = self.get_xyDot(a.x+Lx, a.y+Ly, x, y)
            delta_xDot += d_xDot
            delta_yDot += d_yDot

        return g*delta_xDot, g*delta_yDot

    # XPSYS
    def xpsys(self, Q, atoms):
        F = []

        delta_xDot, delta_yDot = self.getAll_xyDot(Q[1], Q[3], atoms)

        # t
        F.append(1)

        # x
        F.append(Q[2])

        # xDot
        F.append(delta_xDot)

        # y
        F.append(Q[4])

        # yDot
        F.append(delta_yDot)

        return F

    # RK4SYS
    def RK4SYS(self, Q, atoms):
        h = self.cell.step
        F1 = self.xpsys(Q, atoms)
        Y1 = sumLists([Q, multList(h, F1)])

        F2 = self.xpsys(Y1, atoms)
        Y2 = sumLists([Q, multList(h, F2)])

        F3 = self.xpsys(Y2, atoms)
        Y3 = sumLists([Q, multList(2*h, F3)])

        F4 = self.xpsys(Y3, atoms)

        return sumLists([Q, multList(h/3, sumLists([F1, multList(2, sumLists([F2, F3])), F4]))])

    def updateRK(self):
        # Q vector:
        #     0    t
        #     1    x
        #     2    xDot
        #     3    y
        #     4    yDot
        others = []
        for a in self.cell.atoms:
            if not a==self:
                others.append(a)

        Q = [self.cell.time0-self.cell.time, self.x, self.xDot, self.y, self.yDot]
        Q = self.RK4SYS(Q, others)
        self.xDot = Q[2]
        self.yDot = Q[4]

    def updateVelocity(self, other):
        if other.x > self.x:
            Lx = -self.cell.Lx
        else:
            Lx = self.cell.Lx



        if other.y > self.y:
            Ly = -self.cell.Ly
        else:
            Ly = self.cell.Ly

        # Compute for atom and three nearest reflections
        delta_xDot = delta_yDot = 0
        d_xDot, d_yDot = self.get_xyDot(other.x, other.y)
        delta_xDot += d_xDot
        delta_yDot += d_yDot
        force = [d_xDot, d_yDot]

        d_xDot, d_yDot = self.get_xyDot(other.x+Lx, other.y)
        delta_xDot += d_xDot
        delta_yDot += d_yDot
        force = [force[0]+d_xDot, force[1]+d_yDot]

        d_xDot, d_yDot = self.get_xyDot(other.x, other.y+Ly)
        delta_xDot += d_xDot
        delta_yDot += d_yDot
        force = [force[0]+d_xDot, force[1]+d_yDot]

        d_xDot, d_yDot = self.get_xyDot(other.x+Lx, other.y+Ly)
        delta_xDot += d_xDot
        delta_yDot += d_yDot
        force = [force[0]+d_xDot, force[1]+d_yDot]

        self.force = force
        other.force = force
        self.xDot += delta_xDot
        self.yDot += delta_yDot
        other.xDot -= delta_xDot
        other.yDot -= delta_yDot

    def updatePosition(self):
        self.x += self.xDot * self.cell.step
        self.y += self.yDot * self.cell.step

        """
        if self.x > self.cell.Lx:
            self.x = self.x % self.cell.Lx
        elif self.x < 0:
            self.x = self.x % self.cell.Lx

        if self.y > self.cell.Ly:
            self.y = self.y % self.cell.Ly
        elif self.y < 0:
            self.y = self.y % self.cell.Ly
        """
        self.x = self.x % self.cell.Lx
        self.y = self.y % self.cell.Ly

        if self.cell.nodisplay:
            return
        try:
            self.circle.update({'position':(self.x, self.y), 'screen':self.cell.anim.screen})
        except Exception, e:
            print 'ERROR in updatePosition:',e
            print '\t with atom:',self
            self.cell.menu()

    def collision(self, other):
        if self.distance(other) <= 2*self.radius:
            return True
        return False

    def collisionXY(self, x, y):
        if x > self.x:
            Lx = -self.cell.Lx
        else:
            Lx = self.cell.Lx
        if y > self.y:



            Ly = -self.cell.Ly
        else:
            Ly = self.cell.Ly

        r = 2*self.radius
        if self.distanceXY(x, y) <= r:
            return True
        if self.distanceXY(x+Lx, y) <= r:
            return True
        if self.distanceXY(x, y+Ly) <= r:
            return True
        if self.distanceXY(x+Lx, y+Ly) <= r:
            return True
        return False

##################
##  Cell CLASS  ##
##################

class Cell:
    ''' Environment for a set of atoms  '''
    # Constructor
    def __init__(self, options={'size':10, 'cells':1, 'step':.1}, epsilon=1, sigma=1):
        self.Lx = options['size']
        if options.has_key('sizeY'):
            self.Ly = options['sizeY']
        else:
            self.Ly = options['size']  # area usually a square
        self.step = options['step']
        self.time = options['time']
        self.time0 = self.time
        self.cells = options['cells']
        self.epsilon = epsilon
        self.sigma = sigma
        self.sigma6 = sigma**6    # do exp once to save computation time
        self.coeff = 24 * self.epsilon * self.sigma6
        self.atoms = []
        self.radius = .5 * 0.89089871814033927 / sigma
        self.distant = 2.5*self.sigma
        self.pairs_atoms = []
        if options.has_key('nodisplay'):
            self.nodisplay = options['nodisplay']
        else:
            self.nodisplay = False
        try:
            self.update_extra
        except:
            self.update_extra = None
        try:
            self.gotoMenu = options['menu']
        except:
            self.gotoMenu = True
        if options.has_key('rk'):
            self.rk = options['rk']
        else:
            self.rk = False

        r6 = (self.distant)**6
        self.offset = (self.coeff/(self.distant*r6)) * (1 - 2*self.sigma6/r6)

    def collision(self, x, y):
        for atom in self.atoms:
            if atom.collisionXY(x,y):
                return True
            if atom.x > self.Lx or atom.y > self.Ly or \
                    atom.x < 0 or atom.y < 0:
                return True
        return False

    def randomAtoms(self, n):



        for a in range(n):
            self.addAtom()

    def addAtom(self, x=None, y=None, xDot=None, yDot=None, m=1):
        if x==None or y==None:
            x = random()*self.Lx
            y = random()*self.Ly
            tries = 0
            while self.collision(x,y) and tries < 50:
                tries += 1
                x = random()*self.Lx
                y = random()*self.Ly
            if tries >= 50:
                return False
        else:
            if self.collision(x,y):
                return False

        if xDot==None:
            xDot = 800*(2*random()-1)
        if yDot==None:
            yDot = 800*(2*random()-1)

        try:
            a = Atom(self, x, y, xDot, yDot, m)
            self.atoms.append(a)
            return True
        except:
            return False

    def disown(self, atom):
        i = -1
        for a in self.atoms:
            i += 1
            if a == atom:
                del self.atoms[i]

    def pairWithEach(self, a, atoms):
        pairs = []
        for b in atoms:
            pairs.append([a,b])
        return pairs

    def pairs(self):
        if len(self.pairs_atoms) > 0:
            return self.pairs_atoms
        pairs = []
        for i in range(len(self.atoms)):
            pairs.extend(self.pairWithEach(self.atoms[i], self.atoms[i+1:]))
        self.pairs_atoms = pairs
        return self.pairs_atoms

    def update(self):
        if not self.update_extra == None:
            self.update_extra(self)

        # monitor time
        self.time -= self.step
        # print self.time
        if self.time <= 0:
            try:
                self.save(self.saveConfig)
            except:  pass
            if not self.menu():
                return False

        if self.rk:
            for a in self.atoms:
                a.updateRK()



            for a in self.atoms:
                a.updatePosition()
            return True

        else:
            A = self.atoms[0]
            origXdot = A.xDot
            origYdot = A.yDot

            for a,b in self.pairs():
                a.updateVelocity(b)
            for a in self.atoms:
                a.pot = 0
            for a,b in self.pairs():
                a.get_potential(b)

            for a in self.atoms:
                a.updatePosition()
            return True

    def alterSize(self, add):
        if self.Lx + add < 2 or self.Ly + add < 2:
            return False
        self.Lx += add
        self.Ly += add
        self.quit()
        atoms = self.atoms
        self.atoms = []
        for a in atoms:
            self.addAtom(a.x, a.y, a.xDot, a.yDot)
        self.animate()

    def handle(self, key):
        if key == None:
            pass

        # (m) menu
        elif key == 109:
            self.quit()
            self.menu()

        # (s) scale - up
        elif key == 115:
            self.alterSize(1)
        # (x) scale - down
        elif key == 120:
            self.alterSize(-1)

        # density

        else:
            print key

    def animate(self):
        self.anim = Animation(self.Lx, self.Ly, self.cells, {'nodisplay':self.nodisplay})
        for a in self.atoms:
            a.animate()

        while True:
            try:
                self.anim.draw()
            except Exception, e:
                print 'ERROR:',e
                self.anim.quit()
                exit()
            self.handle(self.anim.checkEvent())

            if not self.update():
                return False



    def quit(self):
        self.anim.quit()

    def printState(self):
        print '\nState:'
        print '\tsize:',self.Lx
        print '\tcells:',self.cells
        print '\tstep:',self.step
        print '\ttime:',self.time
        print

    def setup(self, num=None, choice=None):

        if num == None:
            print 'Number of atoms:'
            num = int(sys.stdin.readline()[:-1])
            print '(r)andom,  (t)riangular, or  (s)quare:'
        self.atoms = []

        if choice==None:
            choice = sys.stdin.readline()[:-1]

        # random
        if choice == 'r':
            self.randomAtoms(num)

        # square lattice
        elif choice == 's':
            mult = 2
            num = (2 * mult)**2
            n = 0
            r = self.radius
            e = .0001

            # set appropriate size
            self.Lx = mult * (4*r + 3*e)
            self.Ly = mult * (4*r + 3*e)
            #print 'SIZE:',self.Lx, self.Ly
            #print 'Radius:',self.radius
            #print

            dX = 2*r + e
            x = -dX/2

            while x+dX < self.Lx and n < num:
                x += dX
                dY = 2*r + e
                y = -dY/2
                while y+dY < self.Ly and n < num:
                    y += dY
                    xDot = 10*(2*random()-1)
                    yDot = 10*(2*random()-1)

                    if self.addAtom(x, y, xDot, yDot):
                        n += 1
                    else:
                        print 'FAIL:',x,y

        # triangular lattice
        elif choice == 't':
            mult = 2
            num = (2 * mult)**2
            n = 0
            r = self.radius
            e = .075
            eY = -.07
            sin60 = math.sin(math.radians(60))
            cos60 = math.cos(math.radians(60))

            # set appropriate size
            self.Lx = mult * (4*r + 3*e)



            self.Ly = mult * (2*r + 2*r*sin60 - eY)
            #print 'SIZE:',self.Lx, self.Ly
            #print 'Radius:',self.radius
            #print

            dX = 2*r + e
            x = -dX/2
            shift = dX/2

            while x+dX < self.Lx and n < num:
                x += dX
                dY = 2 * self.radius * math.sin(math.radians(60)) + e
                y = -dY/2
                while y+dY < self.Ly and n < num:
                    if shift == 0:
                        shift = dX/2
                    else:
                        shift = 0
                    y += dY

                    xDot = 10*(2*random()-1)
                    yDot = 10*(2*random()-1)

                    if self.addAtom(x+shift, y, xDot, yDot):
                        n += 1
                    else:
                        print 'FAIL:',x,y

    def menu(self):
        if not self.gotoMenu:
            return False

        self.printState()
        if len(self.atoms) > 0:
            print '(s)tart,  (a)lter,  (c)ontinue,  (r)everse,  or  (q)uit?'
        else:
            print '(s)tart,  (a)lter,  or  (q)uit?'

        choice = sys.stdin.readline()[:-1]
        if choice == 'q':
            exit()
        elif choice == 'c':
            self.animate()
        elif choice == 'r':
            self.time = 10
            for a in self.atoms:
                a.xDot = -a.xDot
                a.yDot = -a.yDot
            self.animate()
        elif choice == 'a':
            print 'Change the state:'
            print '\t1. size'
            print '\t2. cells'
            print '\t3. step'
            print '\t4. time'
            print
            choice = int(sys.stdin.readline()[:-1])
            if choice == 1:
                print 'Enter new size:'
                self.size = int(sys.stdin.readline()[:-1])
            elif choice == 2:
                print 'Enter new number of cells:'
                self.cells = int(sys.stdin.readline()[:-1])
            elif choice == 3:
                print 'Enter new step:'
                self.step = float(sys.stdin.readline()[:-1])
            elif choice == 4:
                print 'Enter new time:'
                self.time = float(sys.stdin.readline()[:-1])
            self.menu()
        else:
            self.setup()



        self.animate()
        return True

    def save(self, file):
        f = open(file, 'w')

        print >>f, '%s\t%f,%f'% ('size', self.Lx, self.Ly)
        print >>f, '%s\t%d'% ('cells', self.cells)
        print >>f, '%s\t%f'% ('time', self.time0)
        print >>f, '%s\t%f'% ('step', self.step)

        for a in self.atoms:
            print >>f, '%s\t%f\t%f\t%f\t%f'% ('atom', a.x, a.y, a.xDot, a.yDot)

    def kineticEnergy(self):
        ''' Returns total kinetic energy '''
        global keFactor
        k = 0
        for a in self.atoms:
            k += keFactor*(a.xDot**2 + a.yDot**2)
        return k

    def pressure(self, T=None):
        N = len(self.atoms)
        if T == None:
            T = self.kineticEnergy()/N
        V = self.Lx * self.Ly
        P = N*T/V
        return P

#################
##  FUNCTIONS  ##
#################

def distance(a, b):
    ''' Generalized euclidian distance function  '''
    d = 0
    for i in range(len(a)):
        d += (a[i] - b[i])**2
    return math.sqrt(d)

def load(file, inoptions={}):
    options = {'size':10, 'cells':1, 'step':.0001, 'time':.1, 'time0':.1}
    scale = 1    # rescaling factor
    scaleV = 1    # Velocity rescaling factor
    for k in inoptions.keys():
        if k == 'rescale':
            scale = float(inoptions[k])
        elif k == 'rescaleV':
            scaleV = float(inoptions[k])
        else:
            options[k] = inoptions[k]

    f = open(file)
    cell = Cell(options)
    for line in f:
        line = line.strip()
        p = line.split('\t')
        if p[0] == 'size':
            s = p[1].split(',')
            cell.Lx, cell.Ly = scale*float(s[0]), scale*float(s[1])
        elif p[0] == 'cells':
            cell.cells = int(p[1])
        elif p[0] == 'step':
            cell.step = float(p[1])
        elif p[0] == 'time':
            cell.time = float(p[1])
            cell.time0 = cell.time



        elif p[0] == 'atom':
            x = scale * float(p[1])
            y = p[2]
            if re.search('/',y):
                n,d = y.split('/')
                y = scale*float(n)/float(d)
            else:
                y = scale* float(p[2])
            xDot = scaleV* float(p[3])
            yDot = scaleV* float(p[4])
            cell.addAtom(x, y, xDot, yDot)

    f.close()
    return cell

def printEnergy(cell):
    global totalP, totalK, obs, e0, e1
    obs += 1
    p = 0
    k = 0
    for a in cell.atoms:
        k += 13e-7*(a.xDot**2 + a.yDot**2)
        p += a.pot

    totalP += p
    totalK += k
    avgP = totalP/obs
    avgK = totalK/obs
    avg = avgP + avgK

    # use this clause for problem 8.4.a
    if .1-cell.step < cell.time <= .1:
        e0 = avg+avgK
    elif 0 <= cell.time < cell.step:
        e1 = avg+avgK
        print 'delta(',e0,',',e1,'):  ',abs(e0 - e1)
    print >>cell.fh, '%f\t%f\t%f\t%f\t%d'% (cell.time0-cell.time, avgP, avgK, avg, obs)
    # print cell.time0-cell.time, '\t', avgP, '\t', avgK

def printEnergy2(cell):
    global data
    p = 0
    k = 0
    # c = 13e-7    # coefficient to make p,k of same order of magnitude
    c = 4e-6
    for a in cell.atoms:
        k += c*(a.xDot**2 + a.yDot**2)
        p += a.pot

    data[cell.time0-cell.time] = p+k
    # print cell.time0-cell.time, p+k

def printKineticEnergy(cell):
    print '%f\t%f'% (cell.time0-cell.time, cell.kineticEnergy())

def printMomentum(cell):
    pX = pY = 0
    for a in cell.atoms:
        pX += a.xDot
        pY += a.yDot
    print >>cell.fh, '%f\t%f\t%f'% (cell.time0-cell.time, pX, pY)

def printLeftHalf(cell):
    global total, obs
    obs += 1
    num = 0
    for a in cell.atoms:
        if a.x <= cell.Lx/2:
            num += 1



    total += num

    print >>cell.fh, '%f\t%d\t%f'% (cell.time0-cell.time, num, total/obs)

def printAvgTemperature(cell):
    global Tsum, obs
    obs += 1
    Tsum += cell.kineticEnergy()/len(cell.atoms)
    print '%f\t%f'% (cell.time0-cell.time, Tsum/obs)

def printVirial(cell):
    global Vsum, obs
    Vol = 2*36   # dimension * volume
    obs += 1
    f = 0.146/8.62

    for a,b in cell.pairs():
        rx = abs(b.x - a.x)
        ry = abs(b.y - a.y)
        Vsum += abs(rx * a.force[0]) + abs(ry * a.force[1])

    print '%f\t%f'% (cell.time0-cell.time, f*Vsum/(obs*Vol))

def printPressure(cell):
    global Tsum, Vsum, obs
    V = 36
    obs += 1
    f = 0.146/8.62
    N = len(cell.atoms)

    Tsum += cell.kineticEnergy()/N
    for a,b in cell.pairs():
        rx = abs(b.x - a.x)
        ry = abs(b.y - a.y)
        Vsum += abs(rx * a.force[0]) + abs(ry * a.force[1])

    P = (N * (Tsum/obs) / V) + f*Vsum/(obs*2*V)
    print '%f\t%f'% (cell.time0-cell.time, P)

def printEnergy3(cell):
    #global data
    p = 0
    for a in cell.atoms:
        p += a.pot

    #data[cell.time0-cell.time] = p/len(cell.atoms)
    print '%f\t%f'% (cell.time0-cell.time, p/len(cell.atoms))

def printEnergy4(cell):
    # global data
    k = cell.kineticEnergy()
    p = 0
    for a in cell.atoms:
        p += a.pot
    tot = p + k
    temp = cell.kineticEnergy()/len(cell.atoms)
    press = cell.pressure()

    # data[cell.time0-cell.time] = p/len(cell.atoms)
    print '%f\t%f\t%f\t%f'% (cell.time0-cell.time, tot, temp, press)

def printEnergy5(cell):
    k = cell.kineticEnergy()
    p = 0
    for a in cell.atoms:
        p += a.pot
    tot = p + k
    temp = cell.kineticEnergy()/len(cell.atoms)



    press = cell.pressure()

    print '%f\t%f\t%f\t%f\t%f\t%f'% (cell.time0-cell.time, p, k, tot, temp, press)

def printEnergy6(cell):
    global E0, data

    k = cell.kineticEnergy()
    p = 0
    for a in cell.atoms:
        p += a.pot
    tot = p + k
    temp = cell.kineticEnergy()/len(cell.atoms)
    press = cell.pressure()
    if E0 == None:
        E0 = tot

    print '%f\t%f\t%f\t%f\t%f\t%f'% (cell.time0-cell.time, p, tot, tot-E0, temp, press)
    # print '%f\t%f\t%f\t%f\t%f\t%f'% (cell.time0-cell.time, p, tot, tot-E0, temp, press)

############
##  MAIN  ##
############

def usage():
    print '''
Usage:
  > python molec.py [OPTIONS]

'''
if __name__ == '__main__':

    if len(sys.argv) > 1:

        # help
        if sys.argv[1] == '-h':
            usage()

        # generate random configuration
        elif sys.argv[1] == '-g':

            # Set the values below as desired
            #cell = Cell({'size':6, 'cells':1, 'step':.0001, 'time':.1, 'nodisplay':True, 'menu':False, 
'rk':False})
            #cell.randomAtoms(16)
            cell = load('8.5.a.initial', {'step':.0001, 'time':.1, 'nodisplay':True, 'menu':False, 
'rk':False})

            #cell.update_extra = printEnergy
            #cell.fh = open('8.5.a.output', 'w')
            print 'No.CELLS:',len(cell.atoms)
            cell.animate()
            cell.save(sys.argv[2])
            #cell.fh.close()

        # Read from file
        elif sys.argv[1] == '-f':
            totalP = totalK = obs = 0
            cell = load(sys.argv[2], {'nodisplay':True, 'menu':False})
            cell.update_extra = printEnergy
            cell.fh = open('8.3.a.output', 'w')
            cell.animate()
            cell.fh.close()

        # 8.2.a
        elif sys.argv[1] == '8.2.a':
            totalP = totalK = obs = 0
            #cell = Cell({'size':6, 'sizeY':6, 'cells':1, 'step':.0001, 'time':.1, 'nodisplay':False, 
'menu':False})



            cell = Cell({'size':3, 'sizeY':3, 'cells':40, 'step':.00001, 'time':.1, 'nodisplay':False, 
'menu':False})
            cell.update_extra = printEnergy
            cell.fh = open('8.2.a.2.output', 'w')
            cell.randomAtoms(16)
            cell.animate()
            cell.fh.close()

        # 8.2.b
        elif sys.argv[1] == '8.2.b':
            totalP = totalK = obs = 0
            cell = Cell({'size':12, 'sizeY':6, 'cells':1, 'step':.0001, 'time':2, 'nodisplay':True, 
'menu':False})
            cell.update_extra = printEnergy
            cell.fh = open('8.2.b.output', 'w')
            cell.randomAtoms(16)
            cell.animate()
            cell.fh.close()

        # 8.2.c
        elif sys.argv[1] == '8.2.c':
            totalP = obs = 0
            cell = Cell({'size':12, 'sizeY':6, 'cells':1, 'step':.0001, 'time':.2, 'nodisplay':True})
            cell.update_extra = printLeftHalf
            cell.fh = open('8.2.c.output', 'w')
            cell.randomAtoms(64)
            print 'No.CELLS:',len(cell.atoms)
            cell.animate()

        # 8.4.a
        elif sys.argv[1] == '8.4.a':
            totalP = totalK = obs = e0 = e1 = 0
            cell = load('8.4.a.initial', {'nodisplay':True, 'menu':False})
            cell.step = float(sys.argv[2])
            cell.update_extra = printEnergy
            cell.fh = open('8.4.a.'+str(cell.step)+'.output', 'w')
            cell.animate()

        # 8.4.b
        elif sys.argv[1] == '8.4.b':
            cell = load('8.4.b.initial', {'nodisplay':True, 'menu':False})
            cell.update_extra = printMomentum
            cell.fh = open('8.4.b.output', 'w')
            cell.animate()

        # 8.4.c
        elif sys.argv[1] == '8.4.c':
            data = {}
            cell = load('8.4.c.initial', {'time':.1, 'nodisplay':True, 'menu':False})
            cell.update_extra = printEnergy2
            for t in [.0001, .000095, .00009, .000085, .00008, .000075, .00007, .000065, .00006, .
000055, .00005, .000045, .00004, .000035, .00003, .000025, .00002, .000015, .00001, .000005]:
                cell.step = t
                cell.animate()
                d = Data(data)
                d.minimize()
                print '%f\t%f\t%f'% (t, d.line[0], d.dev)

        # 8.4.d
        elif sys.argv[1] == '8.4.d':
            data = {}
            cell = load('8.4.d.3.initial', {'step':.001, 'time':.1, 'nodisplay':False, 'menu':False, 
'rk':True})
            cell.update_extra = printEnergy2
            # for t in [.0001, .000095, .00009, .000085, .00008, .000075, .00007, .000065, .00006, .
000055, .00005, .000045, .00004, .000035, .00003, .000025, .00002, .000015, .00001, .000005]:
            for t in [.001]:
                cell.step = t
                # cell.randomAtoms(30)
                cell.animate()
                d = Data(data)
                d.minimize()
                d.plot(); exit()
                d.print_slope_dev(t)



        # 8.5.a
        elif sys.argv[1] == '8.5.a':
            # data = {}
            Vsum = Tsum = obs = 0
            cell = load('8.5.a.initial', {'step':.0001, 'time':10, 'nodisplay':True, 'menu':False, 
'rk':False})
            # cell.update_extra = printAvgTemperature
            # cell.update_extra = printEnergy2
            # cell.update_extra = printKineticEnergy
            # cell.update_extra = printVirial
            cell.update_extra = printPressure
            cell.animate()
            # d = Data(data)
            # d.minimize()
            # d.plot()

        # 8.5.c
        elif sys.argv[1] == '8.5.c':
            # data = {}
            Vsum = Tsum = obs = 0
            cell = load('8.5.a.initial', {'rescale':2, 'step':.0001, 'time':10, 'nodisplay':True, 
'menu':False, 'rk':False})
            # cell.update_extra = printPressure
            cell.update_extra = printAvgTemperature
            cell.animate()
            # d = Data(data)
            # d.minimize()
            # d.plot()

        # 8.8.a
        elif sys.argv[1] == '8.8.a':
            data = {}
            cell = Cell({'size':6, 'cells':3, 'step':.0001, 'time':1, 'nodisplay':True, 'menu':False})
            cell.setup(int(sys.argv[2]), 't')
            # print 'Num atoms:', len(cell.atoms)
            cell.update_extra = printEnergy3
            # cell.update_extra = printPressure
            cell.animate()
            d = Data(data)
            d.minimize()
            d.plot()

        # 8.8.b
        elif sys.argv[1] == '8.8.b':
            data = {}
            cell = Cell({'size':6, 'cells':1, 'step':.00001, 'time':1, 'nodisplay':True, 'menu':False})
            cell.setup(int(sys.argv[2]), 's')
            # print 'Num atoms:', len(cell.atoms)
            cell.update_extra = printEnergy3
            # cell.update_extra = printPressure
            cell.animate()
            #d = Data(data)
            #d.minimize()
            #d.printout()
            #d.plot()

        # 8.9.a
        elif sys.argv[1] == '8.9.a':
            data = {}
            cell = Cell({'size':6, 'cells':3, 'step':.0001, 'time':1, 'nodisplay':True, 'menu':False})
            cell.setup(16, 't')
            #print 'Num atoms:', len(cell.atoms)
            #cell.update_extra = printEnergy4
            # cell.update_extra = printPressure
            cell.animate()
            cell.save(sys.argv[2])

        # 8.9.b
        elif sys.argv[1] == '8.9.b':
            cell = load('8.9.b.initial', {'rescaleV':4, 'step':.0001, 'nodisplay':True, 'menu':False})
            cell.update_extra = printEnergy5
            cell.animate()



        # 8.9.d
        elif sys.argv[1] == '8.9.d':
            scale = 3
            E0 = None
            data = {}
            cell  =  load('8.9.d.initial',  {'rescaleV':scale,  'step':.0001,  'nodisplay':False, 
'menu':False})
            cell.update_extra = printEnergy6
            cell.animate()

        # 8.9.e
        elif sys.argv[1] == '8.9.e':
            cell = load('8.9.e.initial', {'cells':2, 'step':.0001, 'nodisplay':False, 'menu':False})
            cell.update_extra = printEnergy5
            cell.animate()

    
    # Default
    else:
        cell = Cell({'size':6, 'cells':1, 'step':.0001, 'time':10})
        cell.menu()

  Supporting code:

from __future__ import with_statement, division, absolute_import

import sys, os, re, pygame, math
import pygame
from pygame.locals import *
from random import randint
from util import lv

global stdSize
stdSize = 768

class Animation:

    # constructor
    def __init__(self, vSizeX=10, vSizeY=10, cells=1, options={}):
        if options.has_key('nodisplay'):
            self.nodisplay = options['nodisplay']
        else:
            self.nodisplay = False

        if vSizeX < 1:
            vSizeX = 1
        if vSizeY < 1:
            vSizeY = 1
        global stdSize
        if vSizeX > vSizeY:
            self.size = (stdSize, int(stdSize*(vSizeY/vSizeX)))
            self.scale = (stdSize/vSizeX)/cells
        elif vSizeX < vSizeY:
            self.size = (int(stdSize*(vSizeX/vSizeY)), stdSize)
            self.scale = (stdSize/vSizeX)/cells
        else:
            self.size = (stdSize, stdSize)
            self.scale = (stdSize/vSizeX)/cells

        self.cells = cells
        if not self.nodisplay:
            pygame.init()
            # self.screen = pygame.display.set_mode(size, pygame.FULLSCREEN)
            self.screen = pygame.display.set_mode(self.size)



            self.clear()
        else:
            self.screen = None

    # quit
    def quit(self):
        pygame.quit()

    # clear screen
    def clear(self):
        self.screen.fill([255,255,255])

    # check for events
    def checkEvent(self):
        if self.nodisplay:
            return
        for event in pygame.event.get():
            if event.type == pygame.QUIT: sys.exit()
            if event.type == KEYDOWN:
                key = int(event.key)
                if ( key == 103
                     or key == 106
                     or key == 113 ): pass
                elif event.key == K_ESCAPE:
                    self.clear()
                    exit()
                # else:
                #    return int(event.key)

    # set caption
    def setcaption(self, cap):
        pygame.display.set_caption(cap)

    # maintain
    def maintain(self):
        while True:
            self.checkEvent()

    # draw
    def draw(self):
        if not self.nodisplay:
            pygame.display.flip()

    # class Shape
    class Shape:
        colorname = {}
        colorname['black'] = 0, 0, 0
        colorname['white'] = 255, 255, 255
        colorname['dkgrey'] = 80, 80, 80
        colorname['grey'] = 180, 180, 180
        colorname['random'] = randint(50,255), randint(50,255), randint(50,255)

    # Circle
    class Circle(Shape):

        # constructor
        def __init__(self, state, scale, size, cells=1, options={}):
            global stdSize

            self.state = state
            if options.has_key('nodisplay'):
                self.nodisplay = options['nodisplay']
                if self.nodisplay:
                    return
            else:
                self.nodisplay = False

            self.scale = scale
            self.size = size
            self.cells = cells
            self.width = size[0]/cells



            self.height = size[1]/cells
            self.state['radius'] = int(scale* self.state['radius'])

            if type(self.state['color']) == type(''):
                self.state['color'] = self.colorname[self.state['color']]

            x,y = self.state['position']
            x = int(self.scale* x)
            y = int(self.scale* y)

            for i in range(self.cells):
                for j in range(self.cells):
                    pygame.draw.circle( self.state['screen'],
                                        self.state['color'],
                                        [int(x+i*self.width), int(y+j*self.height)],
                                        self.state['radius'] )

        # update
        def update(self, newstate):
            x,y = self.state['position']
            x = int(self.scale* x)
            y = int(self.scale* y)

            if not self.nodisplay:
                for i in range(self.cells):
                    for j in range(self.cells):
                        try:
                            pygame.draw.circle( self.state['screen'],
                                                self.colorname['white'],
                                                [int(x+i*self.width), int(y+j*self.height)],
                                                self.state['radius'] )
                        except Exception, e:
                            print "ERROR 1 in Circle.update:",e
                            exit()

            for k in newstate.iterkeys():
                self.state[k] = newstate[k]

            if self.nodisplay:
                return

            x,y = self.state['position']
            x = int(self.scale* x)
            y = int(self.scale* y)

            for i in range(self.cells):
                for j in range(self.cells):
                    try:
                        #print int(x+i*self.width),',', int(y+j*self.height)
                        pygame.draw.circle( self.state['screen'],
                                            self.state['color'],
                                            [int(x+i*self.width), int(y+j*self.height)],
                                            self.state['radius'] )
                    except Exception, e:
                        print "ERROR 2 in Circle.update:",e
                        exit()

    def mkCircle(self, position, radius=1, color=[80,80,80]):
        state = ({ 'screen':self.screen,
                   'color':color,
                   'position':position,
                   'radius':radius })
        cir = self.Circle(state, self.scale, self.size, self.cells, {'nodisplay':self.nodisplay})
        return cir

# add elements of two lists component by component
#     even lists of different sizes
def sumLists(lists):
    out = []
    i = 0



    active = True
    while active == True:
        active = False
        for list in lists:
            if len(list) >= i+1:
                if len(out) >= i+1:
                    out[i] += list[i]
                else:
                    out.append(list[i])
                active = True
        i += 1
    return out

# Multiply each element of a list by a factor
def multList(x, list):
    out = []
    for e in list:
        out.append(x*e)
    return out

def simplify_basic(line):

    line = line.replace( '\\', ' ' )
    line = line.replace( '/', ' ' )
    line = line.replace( '-', ' ' )
    line = re.sub( '\s+', ' ', line )
    line = re.sub( '^\s+', '', line )
    line = re.sub( '\s+$', '', line )

    return line

##  Default settings for graphics output
chart_object.set_defaults(line_plot.T, line_style=None)
theme.scale_factor = 10
theme.output_format = 'png'
theme.use_color = True
theme.reinitialize()
fill_styles = [fill_style.red,
               fill_style.red,
               fill_style.black,
               fill_style.blue,
               fill_style.darkseagreen,
               fill_style.aquamarine1,
               fill_style.gray70,
               fill_style.brown,
               fill_style.green,
               fill_style.darkorchid,
               fill_style.yellow,
               fill_style.goldenrod,
               fill_style.white]

##  Plot class definition
class Plot:
    '''
    Create graph object to easily plot data

    data :  [ [x1, y1], [x2, y2], [x3, y3], .... ]
    options :  { 'text': words at top
                 'xcol': list of columns in data vector for x-coord
                 'ycol': list of columns in data vector for y-coord
                 'lineLabel': list of labels for y-columns
                 'xRange': [low, high]
                 'yRange': [low, high]
                 'xTics':  num of tics
                 'yTics':  num of tics
                 'xFormat': num format
                 'yFormat': num format
                 'line_style': line style
    '''
    # Constructor
    def __init__(self, data, options={}):



        self.data = data

        if options.has_key('xcol'):
            self.xcol = options['xcol']
        else:
            self.xcol = [0]
        if options.has_key('ycol'):
            self.ycol = options['ycol']
        else:
            self.ycol = range(len(data[0]))[1:]
        if options.has_key('title'):
            self.title = options['title']
        else:
            self.title = ''
        if options.has_key('fill_style'):
            self.fill_style = options['fill_style']
        else:
            self.fill_style = fill_styles
        if options.has_key('xLabel'):
            self.xLabel = options['xLabel']
        else:
            self.xLabel = ''
        if options.has_key('yLabel'):
            self.yLabel = options['yLabel']
        else:
            self.yLabel = ''
        if options.has_key('lineLabel'):
            self.lineLabel = options['lineLabel']
        else:
            self.lineLabel = 'line'
        if options.has_key('xRange'):
            self.xRange = options['xRange']
        else:
            self.set_xRange()
        if options.has_key('yRange'):
            self.yRange = options['yRange']
        else:
            self.set_yRange()
        if options.has_key('xTics'):
            self.xTics = options['xTics']
        else:
            self.xTics = 5
        if options.has_key('yTics'):
            self.yTics = options['yTics']
        else:
            self.yTics = 5
        if options.has_key('xFormat'):
            self.xFormat = "/a-60/hL%" + options['xFormat']
        else:
            xR = self.xRange[1] - self.xRange[0]
            if xR > .001 and xR < 10000:
                self.xFormat = "/a-60/hL%0.4f"
            else:
                self.xFormat = "/a-60/hL%0.5e"
        if options.has_key('yFormat'):
            self.yFormat = "/a-60/hL%" + options['yFormat']
        else:
            yR = self.yRange[1] - self.yRange[0]
            if yR > .001 and yR < 10000:
                self.yFormat = "%0.4f"
            else:
                self.yFormat = "%0.5e"
        if options.has_key('lineStyle'):
            self.lineStyle = options['lineStyle']
        else:
            self.lineStyle = None
        self.xTic = abs( (self.xRange[1] - self.xRange[0])/self.xTics )
        self.yTic = abs( (self.yRange[1] - self.yRange[0])/self.yTics )

    # set xRange automatically from data
    def set_xRange(self):
        low = sys.maxint
        high = -sys.maxint



        for x in self.xcol:
            for dat in self.data:
                if dat[x] > high:
                    high = dat[x]
                if dat[x] < low:
                    low = dat[x]
        self.xRange = [low, high]

    # set yRange automatically from data
    def set_yRange(self):
        low = sys.maxint
        high = -sys.maxint
        for y in self.ycol:
            for dat in self.data:
                if dat[y] > high:
                    high = dat[y]
                if dat[y] < low:
                    low = dat[y]
        self.yRange = [low, high]

    # printout (should pipe into a file)
    def printout(self):
        titleLocation = (30,120)
        if self.xRange[0] == self.xRange[1]:
            self.xRange = [self.xRange[0]-1, self.xRange[0]+1]
            self.xTic = .5
        if self.yRange[0] == self.yRange[1]:
            self.yRange = [self.yRange[0]-1, self.yRange[0]+1]
            self.yTic = .5

        xAxis = axis.X(format=self.xFormat, tic_interval=self.xTic, label=self.xLabel)
        yAxis = axis.Y(format=self.yFormat, tic_interval=self.yTic, label=self.yLabel)
        tb = text_box.T(loc=titleLocation, text=self.title, line_style=self.lineStyle)
        ar = area.T(x_axis=xAxis, y_axis=yAxis, x_range=self.xRange, y_range=self.yRange)

        # Iterate over appropriate columns to make plots
        plots = []
        for x in self.xcol:
            j = -1
            for y in self.ycol:
                j += 1
                lineLabel = 'line'
                try:
                    if type(self.lineLabel) == type([]):
                        lineLabel=self.lineLabel[j]
                except:
                    print 'ERROR in printout()'
                tick = tick_mark.Circle(size=2, fill_style=self.fill_style[y], line_style=None)
                plot = line_plot.T(label=lineLabel, data=self.data, xcol=x, ycol=y, tick_mark=tick)
                ar.add_plot(plot)

        ar.draw()
        tb.draw()

# Plot data (should pipe into png file)
def plot_png(data, options={}):
    '''
    plot_png will plot a set of data, label/format it, and save at as a png to <file>

    data :  [ [x1, y1], [x2, y2], [x3, y3], .... ]
    options :  { 'text': words at top
                 'lineLabel': list of labels for y-columns
                 'xcol': list of columns in data vector for x-coord
                 'ycol': list of column in data vector for y-coord
                 'xRange': [low, high]
                 'yRange': [low, high]
                 'xTics':  num of tics
                 'yTics':  num of tics
                 'xFormat': num format
                 'yFormat': num format



                 'line_style': line style
    '''
    plot = Plot(data, options)
    plot.printout()

# Read from a file and plot data
def plotFromFile(file, options={}):

    f = open(file)
    data = []
    for line in f:
        line = line.strip()
        dat = line.split("\t")
        dataLine = []
        for d in dat:
            dataLine.append(float(d))
        data.append(dataLine)

    labels = []
    i = 0
    for d in data[0]:
        labels.append('col '+str(i))
        i += 1

    options['title'] = simplify_basic(file)
    if not options.has_key('lineLabel'):
        options['lineLabel'] = labels

    plot_png(data, options)

##  Data CLASS  ##

class Data:

    def __init__(self, data, degree=1):
        ''' <data> is a dictionary s.t.: data[x] = y '''
        self.data = data
        self.degree = degree
        self.X = sorted(data.keys())
        self.Y = sorted(data.values())
        self.medX = average(self.X)
        self.medY = average(self.Y)
        self.setCurve(degree)
        self.dev = self.getStdDev(self.error)

    def setCurve(self, degree):
        if degree == 1:
            self.setLine()

    def avgSlope(self):
        n = -1
        thetas = []
        lastX = self.X[0]
        for x in self.X[1:]:
            # if x == self.medX:
            #    continue
            n += 1
            # rise = self.data[x] - self.medY
            # run = x - self.medX
            rise = self.data[x] - self.data[lastX]
            run = x - lastX
            thetas.append( math.atan2(rise, run) )
            lastX = x
        theta = average(thetas)
        slope = math.tan(theta)
        return slope

    def setLine(self):



        last = self.X[0]
        m = self.avgSlope()
        x = self.medX
        y = self.medY
        b = y - m*x
        self.line = [m,b]

        def curve(z):
            return m*z + b
        self.curve = curve

        def error(z):
            return (self.data[z] - m*z - b)**2
        self.error = error

    def getStdDev(self, error):
        e = 0
        for x in self.X:
            e += error(x)
        return math.sqrt(e)/(len(self.X))

    def best(self, i):
        if self.degree == 1:
            line = self.line
            x = line[i]
            best = x
            g = .5*x
            lastDev = self.dev
            dev = sys.maxint
            while abs(g) > 1e-10:
                x += g
                line[i] = x
                m,b = line
                def error(z):
                    return (self.data[z] - m*z - b)**2
                dev = self.getStdDev(error)
                # lv({'m':x, 'dev':dev, 'g':g, 'best':[best,self.dev]})

                # Better value found
                if dev <= self.dev:
                    best = x
                    self.dev = dev

                if dev > lastDev:
                    g = -.9*g

                lastDev = dev

        return best

    def minimize(self):
        if self.degree == 1:
            m,b = self.line
            m = self.best(0)    # pass the index in self.line
            b = self.best(1)
            m = self.best(0)
            b = self.best(1)
            m = self.best(0)
            b = self.best(1)
            self.line = [m,b]

            def curve(z):
                return m*z + b
            self.curve = curve

            def error(z):
                return (self.data[z] - m*z - b)**2
            self.error = error



    def plot(self, options={}):
        points = []
        for x in self.X:
            points.append([x, self.data[x], self.curve(x)])

        subj = options['lineLabel']
        options['lineLabel'] = [subj, 'Drift:'+str(self.line[0])]
        if not options.has_key('ycol'):
            options['ycol'] = [1,2]
        if not options.has_key('title'):
            options['title'] = '%s: %f+-%0.3e'% (subj, self.medY, self.dev)

        plot_png(points, options)

    def printout(self):
        for x in self.X:
            print '%f\t%f\t%f'% (x, self.data[x], self.curve(x))

    def print_slope_dev(self, t):
        print '\t%f\t\t%0.4e\t\t%0.4e'% (t, self.line[0], self.dev)

def average(list):
    sum = 0
    for e in list:
        sum += e
    return sum/len(list)


