
Fish Population Dynamics

A controlled fish population was simulated using a computer model. Specifically, that of a

fish farm having zero immigration and emigration. The only growth factor was fish births.

Due to the controlled (and idealized) environment, factors such as weather, seasons, la nina,

etc. will be ignored. The only reduction factor in the model was fish deaths. Another

simplification in the model is that floating points will be used to represent all quanitities. This

is appropriate since the conclusions of the model are most appropriate when applied to

millions of fish.

This population model can be described by the following equation

Nt+1 = Nt + dN/dt

= Nt + r Nt (1 - Nt /K) - Et v Nt

and the effort is updated according to:

Et+1 = Et + dE/dt

= Et + a (P Et v Nt - c Et)

where:

Nt = number of fish at time t

Nt+1 = is the number of fish one timestep later.:

r = birth rate

K = carrying capacity

Et = effort during timestep t

v = fishability

a = reinvestment rate

P = price / fish

c = cost / effort

It is expected that some combination of correct values for the parameters above will

produce a stable fish population. Intuition says that increasing birth rate will cause effort to

decrease, or profits to rise.

2. Running the model

2.a - 2.b. Regions of chaos were sought in order to avoid them by finding stable zones.

Using the following initial conditions the population becomes chaotic at r=2.5783.:

N=50, K=100, E=.2, v=.1, a=.3, c=4.0, P=1.0, dE/dt = dP/dt = 0

In fact, keeping E constant produces a very strange relationship between the chaotic point of r

and E, as seen below.:

For some values of E there is a striking linearity. For others there is some linearity with other

values. It is an interesting graph.

Next E was allow to variate according to the equation from part 1.:

Et+1 = Et + a (P Et v Nt - c Et)

Below is Effort and and number of fish plotted against time.

The stability of the system looks quite appealing until one also plots net profit (closeup

below right).:

Since we are attempting to model a macrocosmic fishing community, let us also allow the

price P per fish to be affected by the yield. It stands to reason that higher yields cause the

price to drop, and that there is a certain size to the fish market (the number of fish people

would like to buy), and that the price has a certain sensitivity to the difference between the

market and the actual yield. So, the change in the price P is:

dP/dt = sensitivity (market - yield)

This equation implies that when the yield is above the market, the price goes down. Keeping

all other factors the same, let us apply a very small sensitivity to the market: .00001. Also, let

us assume a best-case scenario (for fisherman), that the market = 50, the amount of fish we

are starting with. The same variables as before are now as plotted below.:

A graph of the yield during this time period shows that it doesn't ever approach the market.:

So, now let us boost the sensitivity a little, to .0001. Theoretically, this should make life better

for the fisherman. Results shown below.:

This situation looks pretty grim. The fisherman live with worse and worse profits while putting

in more effort.

Putting profits aside for the moment, let us look briefly at values of our parameters and

whether or not they cause a system to find equilibrium or stay chaotic. Starting with the

default values and the system as just described, with N, E, and P all variating, r remains

stable until it reaches 2.640154. At 2.640155 it leaves the zone of bifurcation/cycling, and

enters a chaotic zone, where the N at each timestep is unpredictable. Let this point be called

rc. rc was found for various parameter combinations by finding the highest stable value, using

smaller and smaller steps until a highest stable value was found within a small distance from

a known chaotic value.

A system was classified as chaotic under the following conditions: at least 100 timesteps

had past, and the current tuple (N, E, P) was not roughly equivalent to any previous tuple.

The most obvious parameter to modulate is reinvestment. Below is r c plotted against

reinvestment.

The graph above shows different values of a (reinvestment), and the corresponding rc on

the y-axis. If the fish in question has a high r, such as 3, the reinvestment should not be set

above .2 or so.

Let us say that technology improvements allow the fish to become more fishable,

increasing v. Below is plotted rc against v.

The above values for rc were found with all other parameters set to defaults. As can be

seen, some of the values for rc are -1. These are merely placeholders to show that there was

no value of v for which a stable r could be found (leaving all other parameters at default

values.

Now let us say the government decides to subsidise fishermen by paying for some of their

expenses. This brings down the cost per effort, c. Below, rc is plotted against c.

As long as the fishermen incur a cost of about .9, there appears to be plenty of stable

parameter space.

3. Fix the model

A proposed solution to the long term problem of fishing profitability and fish population

stability is controlled genetic breeding. Assuming a fish farm, fish can be kept in numerous

relatively small groups. The groups that have the highest yield could be left unculled. All

others would be sold on the fish market. This kind of targeted fish selling could increase profit

by increasing the number of fish sold without increasing effort.

Let us now say that r changes with time, always increasing. The purpose of this paper is

not to investigate genetic modifications, so no support is given here for the viability of this plan

from a biological standpoint, only a mathematical one. Let us say that r increases slowly, but

linearly. Let dr/dt = .05. Below is a graph showing the viability of this system.

As can be seen, the solution is still no good. Profit hovers around zero while the effort

rises continutally. At least the fish population is still stable.

Instead of using something as fancy as genetic modification, why not use the old standby

that state governments all across this great nation already use -- the fishing limit. If we set a

max yield to 10 fish per timestep, all parameters are stable, including the profit.

Although wild fish situations are much less controlled, the indication of this simple model

is that a correctly-set limit on the total yield of the fishing community will produce a stable

situation with reasonable profits.

BIBLIOGRAPHY

[1] Wikipedia article

http://en.wikipedia.org/wiki/Population_dynamics_of_fisheries

Explanation of fish population models

http://en.wikipedia.org/wiki/Population_dynamics_of_fisheries

CODE Appendix

(Plotting code not included as it was already included in the atomic simulation project)

POPULATION CLASS

class Population:

 def __init__(self, N0=50, r=1.0, K=100, E0=.2, v=.1, a=.3, c=4.0, P0=1.0):
 self.t = 0
 self.N = self.N0 = N0 # number of fish
 self.r = self.r0 = r # birth rate
 self.K = K # carrying capacity
 self.E = self.E0 = E0 # effort
 self.v = v # fishability
 self.a = a # reinvestment
 self.c = c # cost/effort
 self.P = self.P0 = P0 # price/fish

 self.initial = [self.N0, self.E0, self.P0]
 self.sensitivity = .0001 # price sensitivity to yield
 self.market = 50 # market for fish

 # also in self.reset()
 self.p = 0 # net profit
 self.y = 0 # yield
 self.past = []
 self.present = self.initial
 self.maxYield = sys.maxint

 self.takeSnapshot()

 def next(self):
 self.t += 1
 if self.p > self.maxYield:
 return

 self.E += self.dEdt()
 self.N += self.dNdt()
 self.P += self.dPdt()

 if self.N < 0: # just in case
 self.N = 0.0
 if self.E < 0: # just in case
 self.E = 0.0
 if self.P < 0: # just in case
 self.P = 0.0
 self.takeSnapshot()
 #self.printout()

 def dNdt(self):
 return self.r * self.N * (1 - self.N/self.K) - self.E * self.v * self.N

 def dEdt(self):
 self.y = self.E * self.v * self.N
 self.p = self.P * self.y - self.c * self.E
 return self.a * self.p

 def dPdt(self):
 return self.sensitivity * (self.market - self.y)

 def printout(self):
 print '%d\t%f\t%f\t%f'% (self.t, self.N, self.E, self.P)

 def takeSnapshot(self):
 self.past.append(self.present)
 self.present = [self.N, self.E, self.P]

 def reset(self):
 self.N, self.E, self.P = self.initial
 self.t = 0
 self.past = []
 self.preset = self.initial
 self.p = 0 # net profit
 self.y = 0 # yield

 def stable(self):
 i = -1
 for p in self.past:
 # lv({'p':p, 'now':[self.N, self.E, self.P]})
 i += 1
 if closeEnough([self.N, self.E, self.P], p):
 return True
 return False

 def chaotic(self):
 if self.t > 100:
 if not self.stable():
 return True
 return False

 def run(self, func=None):
 while not self.stable() or self.t < 40:
 #self.printout()
 self.next()
 if func != None:
 func(self)
 # self.printout()
 # choice = sys.stdin.readline()[:-1]
 # if choice == 'q':
 # exit()
 if self.t > 100:
 return False # must be chaotic
 return True

 def chaoticR(self, func=None):
 self.reset()
 self.r = self.r0

 if not self.run(func):
 # print "Must start in stable zone"
 return -1

 # iterate upward until highest stable r is found
 g = 1
 stable = self.r
 last = self.r
 while abs(g) > 1e-5:
 # lv({'r':self.r, 'g':g, 'E':E})
 self.reset()
 self.r += g
 if self.run(func):
 stable = self.r
 last = self.r
 else:
 g = .9*g
 self.r = last
 return stable

FUNCTIONS

def closeEnough(S, T, prec=.01):
 e = .00000000001 # just to prevent division by 0
 if S[0] == None or T[0] == None:

 return False
 for i in range(len(S)):
 if 2*abs(S[i]-T[i] +e)/(S[i]+T[i] +e) > prec:
 return False
 return True

def print_NE(self):
 print '%d\t%f\t%f'% (self.t, self.N, self.E)

def print_NEpy(self):
 global avg_p, obs
 avg_p += self.p
 obs += 1
 print '%d\t%f\t%f\t%f\t%f\t%f'% (self.t, self.N, self.E, self.p, avg_p/obs, self.y)

def gm(self):
 global avg_p, obs
 self.r += 0 #0.05
 avg_p += self.p
 obs += 1
 print '%d\t%f\t%f\t%f\t%f\t%f'% (self.t, self.N, self.E, self.p, avg_p/obs, self.y)

MAIN

def usage():
 print '''
Usage:
 > python fish.py <N0> <r> <K> <E> <v> <a> <c> <P>

'''
if __name__ == '__main__':

 if len(sys.argv) >= 2:

 if sys.argv[1] == '2.a.2':
 fish = Population()
 func = print_NE
 fish.run(func)

 elif sys.argv[1] == '2.a.3':
 avg_p = obs = 0
 fish = Population()
 func = print_NEpy
 fish.run(func)

 elif sys.argv[1] == '2.a.4':
 avg_p = obs = 0
 fish = Population()
 func = print_NEpy
 fish.run(func)

 # look for chaotic regions
 elif sys.argv[1] == '2.a.5':
 for a in range(50):
 a = .01 + .01*a
 avg_p = obs = 0
 fish = Population()
 fish.a = a
 print '%f\t%f'% (a, fish.chaoticR())

 elif sys.argv[1] == '2.a.6':
 for v in range(50):
 v = .01 + .01*v
 avg_p = obs = 0
 fish = Population()

 fish.v = v
 print '%f\t%f'% (v, fish.chaoticR())

 elif sys.argv[1] == '2.a.7':
 for c in range(40):
 c = .1 + .1*c
 avg_p = obs = 0
 fish = Population()
 fish.c = c
 print '%f\t%f'% (c, fish.chaoticR())

 elif sys.argv[1] == '3.a':
 avg_p = obs = 0
 fish = Population()
 func = gm
 fish.run(func)

 elif sys.argv[1] == '3.b':
 avg_p = obs = 0
 fish = Population()
 fish.maxYield = 10
 func = gm
 fish.run(func)

 exit()

 ## Default action
 N0 = 50.0
 fish = None
 if len(sys.argv) > 2:
 r = float(sys.argv[2])
 K = float(sys.argv[3])
 E0 = float(sys.argv[4])
 v = float(sys.argv[5])
 a = float(sys.argv[6])
 c = float(sys.argv[7])
 P0 = float(sys.argv[8])
 fish = Population(N0, r, K, E0, v, a, c, P0)
 else:
 fish = Population(N0)

 #print fish.run()

 #for E in range(100):
 if True:
 print '%f'% (fish.chaoticR())
 fish.reset()

