
Stacking of POS-Taggers

The objective of this project is simple enough that any layman gets it immediately: To write a program that classifies English 

words into parts of speech.  The layman's understanding of part-of-speech (POS) classification belies the true complexity of 

the problem.  My aim has been to try to tame this complexity by stacking three POS-taggers that each approach the 

problem from very different directions.  I prepared a lot of data and successfully stacked the taggers.  The models take a 

great deal of time to build and proper testing has still not finished, but I believe that the stacked POS classifier is better 

than any of it's three constituents on their own.

THE TAGGERS

POS-tagging is an interesting enough problem that many people have attempted it already.  The most well known attempt is 

the “Brill Tagger,” developed by Eric Brill, who now works in the Natural Language Group at Microsoft:

http://www.cs.jhu.edu/~brill/

It is a rules-based tagger.  Each word is given a POS somewhat naively, and then decisions on whether and how to alter 

the POS are made based on a long list of rules.

The second tagger chosen is called “Trigrams 'n' Tags.”  Instead of a list of rules, it “is an implementation of the Viterbi 

algorithm for second order Markov models,” from the site:

http://www.coli.uni-saarland.de/~thorsten/tnt/

It was written by Thorsten Brants of the Universität des Saarlandes.

The third and final tagger is called, “MXPOST,” uses the principle of Maximum Entropy to find part of speech.  Written by 

Adwait Ratnaparkhi, of the Human Language Technologies Department at IBM, it can be obtained here:

http://www.cogsci.ed.ac.uk/~jamesc/taggers/MXPOST.html

Each of these taggers was treated as a black box.  I wrote a Perl tool, 'posTool.pl'  that operates as a unifying 
wrapper to each tagger.  It uses a perl library I wrote that provides one interface for all taggers.  I can input normal 

English text, and this text gets reformatted and filtered so that it will be understood by whichever tagger is being used, and 

the output is also normalized so that it all looks the same.  The only noticeable difference between the taggers is in their 

choice of tags.

THE DATA

http://www.cs.jhu.edu/~brill/
http://www.cogsci.ed.ac.uk/~jamesc/taggers/MXPOST.html
http://www.coli.uni-saarland.de/~thorsten/tnt/


The project required data.  I decided to get as much as I could find.  It was very hard to find, but when I finally found 

some, I found a great deal and I tried to use it all.  I now see this as a mistake.  While more data is  always 

desirable, this amount was more than I had time to handle.  I believe it was said once in our class that dealing with data 

often consumes the most time.  The following is how the last month and a half has been spent:

5%  searching for / selecting the taggers

10%  coding a wrapper for the taggers

10%  searching for data

5%  sifting through and selecting usable data

67%  cleaning data

1%  finding weakness in each tagger

1%  writing and optimizing stacking algorithm

1%  writing this paper

That's 82% spent on managing data!

I found more than these sets of data (described below), but these were the ones that I believed would be the most 

usable.   As a condition, they also had to be normalizable.  Each set used it's own syntax and one of several different 

tagsets.  I chose the Penn Treebank (PT) set for the tagset, and the following format for the output:

Word|tag  word|tag  word|tag . . . .

I also made these restrictions that most datasets didn't have in their original form:

1. Each sentence on its own line

2. Each contraction, possessive, or other punctuation is united with the most appropriate word.

3. These punctuation marks can come at the beginning of a word: [ $ ( ' “ - ]

4. These marks can come in the middle of a word: [ ' - ]

5. These marks can come at the end of a word:  [ , . : “ ? ! ) % ]

6. All punctuation comes on the word-side, not the tag side (i.e. Before the '|' pipe)

For an example of #2, some datasets list “he's” as two words ( he|tag1  's|tag2 ).  These were united into “he's|

tag1-tag2”.  That way the tag information is preserved, but the words appear as they would in normal text.  Before text is 

passed to the taggers, possesives and common contractions are actually split up, but the tagged data is the reconcatenated 

before printing.  As a side note, “NONE” was allowed for cases where the tag was unknown.

I chose the vertical pipe “|” instead of the commonly-used “/” because I wanted web addresses to be valid input material. 

The pipe is hardly ever used in common text.  I also limited the allowed punctuation to the marks listed here in brackets: [ 



. , ' “ - ? ! $ % ( ) / : ].  The final tagger doesn't actually use most of these, but that decision wasn't made at this 
point, and a future version of the tagger might use them.

Here is an example of the regularization process.  The following is a BROWN-Corpus sentence in its original format:

(S (PP-LOC (IN In)
(NP (NP (PRP$-DEI your)
     (NNP Sept.)
     (CD 2)
     (NN page-one)
     (NN article))
 (`` ``)
 (VP (VBG Living) (PP-CLR (IN With) (NP#1002 (NNP AIDS))))))

     (, ,)
     ('' '')
     (NP-SBJ-PLE#0 (PRP it))
     (VP (AUX was)
      (VP (VBN stated)
       (NP (-NONE- *-0))
       (SBAR (IN that)

(S (NP-SBJ#49 (NNS patients))
 (VP (VBP hope)
  (SBAR (-NONE- 0)
   (S (NP-SBJ#1002 (PRP$#49 their) (NNS AIDS))
    (VP (MD will)
     (VP (VB become)
      (`` ``)
      (NP-PRD#1005 (DT a) (JJ manageable) (NN disease))
      (PP (IN like) (NP#1006 (NN diabetes))))))))))))

     (. .)

The following is the regularized format:

In|NN  your|PRP$  Sept.|NNP  2|CD  page-one|NN  article|NN  “Living|VBG 
With|IN AIDS,”|NNP it|PRP was|NONE stated|VBN that|IN patients|NNS 
hope|VBP their|PRP$ AIDS|NNS will|MD become|VB “a|DT manageable|JJ 
disease|NN like|IN diabetes.”|NN



As you can see above, the final format is entirely different.  Some things are ignored, like the tag “DEI,” or the tag 

“AUX,” which has no consistent mapping into PT, and some things are inferred and added in, like the ending double-quote.

The following is a description of the sets of data that were used.  They were not obtained through normal channels.  They 

were all found on random CD's in a closet at my workplace.  I do not therefore have details on the provenance of each 

one, and I cannot be sure than any of them is a complete set.  I also cannot confirm the extent to which they have been 

human-checked, though it is assumed they are, and the notes I found do seem to indicate this.  Most can be obtained 

through the LDC (http://www.ldc.upenn.edu/), but for a fee.  Since it was not known how much overlap could be 

expected between the sets, I will later describe a protocol that I used for uniquing each sentence.

ATIS:  A set of dialogs from speech data having to do with the airline industry

This set is extremely small compared to the others, but useful because speech data is quite different from newspaper text. 

It is less structured and therefore could have some unique phrasing.  The tagset is already PT, but the  words are on 

separate lines.  Here is a typical fragment:

======================================
List/VB
[ the/DT flights/NNS ]
from/IN
[ Baltimore/NNP ]
to/TO Seattle/NNP
[ that/WDT stop/VBP ]
in/IN
[ Minneapolis/NNP ]
======================================
Does/VBZ
[ this/DT flight/NN ]
serve/VB
[ dinner/NN ]
======================================
[ I/PRP ]
need/VBP
[ a/DT flight/NN ]
to/TO Seattle/NNP leaving/VBG from/IN
[ Baltimore/NNP ]
making/VBG
[ a/DT stop/NN ]

http://www.ldc.upenn.edu/


in/IN
[ Minneapolis/NNP ]
======================================

Each sentence is bounded by lines.  It is important to the unification of the datasets that sentences be separable.  Each 

sentence can be compared and only one copy of each sentence kept.  The tags used here are already Penn Treebank 

(PT).

BNC:  British National Corpus

Only certain sections of this set were POS-tagged.  Even so, This set is the largest.  It also uses a larger tagset than 

the PT.  It uses the original BNC codes, not the “Enriched” BNC codes.  The mapping from this BNC tagset to PT was 

more complicated than what had to be done for the other tagsets, but it was doable with attention to detail.  One example 

of these complications:

The BNC set has special tags for the verb “to be”:

VBB:  some present tense forms of the verb be ( e.g. am, are, 'm, 're, be (subjunctive or imperative), 

ai (as in ain't) ).

VBZ:  the -s form of the verb be (e.g. is, 's ).

These (along with some other tags) map to the following two tags in PT:

VBP  Verb, non-3rd person singular present

VBZ  Verb, 3rd person singular present

Therefore, to map the BNC tag “VBB” to PT, you must check the word as well.  If the word is “are,” for example, then 

the conversion is VBB -> VBP.  If the word is “he's,” however, the conversion is VBB -> VBZ.  “VBZ” maps without 

changing from BNC to PT, but there are other tag-name collisions with which more care must be taken, such as “PRP,” 

which in BNC marks prepositions, other than “of” (e.g. “about”, “at”, “in”, ...), while in PT it marks personal pronouns. 

Another complication with this set was all of the punctuation and special char codes, such as “&Euml;” for a capital E with 

dieresis, and “&frac14;” for the symbol of the fraction “1/4.”  All of these codes had to be replaced with something that 

wouldn't alter the POS landscape of a sentence.  Here is an example of what the BNC data looks like:

<utt>
Guaranteed / AJ0 AJ0
Capital / NN1 NN1
Bond / NP0 NN1-NP0
<utt>
Stock / NN1-NP0 NP0
Market / NP0 NP0



Growth / NN1-NP0 NP0
or / CJC CJC
Your / DPS DPS
Money / NN1 NN1
Back / AVP AVP
<utt>
OFFER / VVB NN1
CLOSES // NN2 VVZ
29 / CRD CRD
MAY / NP0 NP0
1992 / CRD CRD
<utt>
All / DT0 DT0
the / AT0 AT0
attractions / NN2 NN2
of / PRF PRF
stock / NN1 NN1
market / NN1-VVB NN1-VVB
growth / NN1 NN1
. / PUN PUN
<utt>

BROWN CA-CR:  Brown Corpus, text from WSJ and other sources

Very similar to ATIS, this first BROWN set is marked mostly with PT tags.  There are a few non-PT tags such as “.” 

and “,”.  These marks are just combined with the most appropriate word and their tags are dropped.  Here is an example:

==================================
[ It/PRP ]
has/VBZ been/VBN 
[ my/PRP$ lot/NN ]
[ all/DT ]
through/IN 
[ life/NN ]
to/TO associate/VB with/IN 
[ eminent/JJ scientists/NNS ]
and/CC at/IN 
[ times/NNS ]
to/TO discuss/VB with/IN 



[ them/PRP ]
[ the/DT deepest/JJS ]
and/CC most/RBS vital/JJ of/IN 
[ all/DT questions/NNS ]
,/, 
[ the/DT nature/NN ]
of/IN 
[ the/DT hope/NN ]
of/IN 
[ a/DT life/NN ]
beyond/IN 
[ this/DT ]
./. 
==================================

BROWN 1987-1989:  Also from WSJ, but formatted differently and most likely containing 

a lot of non-overlapping data

Most but not all words are on separate lines.  They are parsed into clauses with the tag listed just before each word. 

Most of the non-PT tags here have to do with grammar structures, not the words themselves.  Here is an example of the 

data:

(S1 (S (PP-LOC (IN In)
(NP (NP (PRP$-DEI your)
     (NNP Sept.)
     (CD 2)
     (NN page-one)
     (NN article))
 (`` ``)
 (VP (VBG Living) (PP-CLR (IN With) (NP#1002 (NNP AIDS))))))

     (, ,)
     ('' '')
     (NP-SBJ-PLE#0 (PRP it))
     (VP (AUX was)
      (VP (VBN stated)
       (NP (-NONE- *-0))
       (SBAR (IN that)

(S (NP-SBJ#49 (NNS patients))



 (VP (VBP hope)
  (SBAR (-NONE- 0)
   (S (NP-SBJ#1002 (PRP$#49 their) (NNS AIDS))
    (VP (MD will)
     (VP (VB become)
      (`` ``)
      (NP-PRD#1005 (DT a) (JJ manageable) (NN disease))
      (PP (IN like) (NP#1006 (NN diabetes))))))))))))

     (. .)

CRATER:  Corpus Resources and Terminology Extraction, a trilingual English, French, and 

Spanish dataset.  (Only English was used)

The format of this data almost looks like HTML.  Word are on separate lines, listed along with other information.  Each 

word as it “would appear” is between the “ORTH” tags.  The POS is between the “CTAG” tags.  This dataset is 

interesting for other types of projects as well because the corresponding lemmas are between the “BASE” tags.  Sentences 

are marked by “S” tags. 

This set uses the “Enriched BNC” tagset, which has more tags than the original BNC tagset.  These new tags show a 

very fine granularity which can be seen in tags like these:

NNU1 : Singular unit-of-measurement noun (e.g. inch, liter, hectare)

ZZ2 : plural letter of the alphabet (e.g. A's, b's)

With such granularity it is relatively simple to convert these tags to PT, albeit time-consuming.

Here is an example from the data:

<S><TAB><TOK><ORTH>A</ORTH><BASE>a</BASE><CTAG>AT1</CTAG></TOK>
<TOK><ORTH>bi</ORTH><BASE>bi-directional</BASE><CTAG>JJ</CTAG></TOK>
<TOK><ORTH>-</ORTH><BASE>x</BASE><CTAG>x</CTAG></TOK>
<TOK><ORTH>directional</ORTH><BASE>x</BASE><CTAG>x</CTAG></TOK>
<TOK><ORTH>path</ORTH><BASE>path</BASE><CTAG>NN1</CTAG></TOK>
<TOK><ORTH>comprised</ORTH><BASE>comprise</BASE><CTAG>JJ</CTAG></TOK>
<TOK><ORTH>of</ORTH><BASE>of</BASE><CTAG>IO</CTAG></TOK>
<TOK><ORTH>an</ORTH><BASE>an</BASE><CTAG>AT1</CTAG></TOK>
<TOK><ORTH>input</ORTH><BASE>input</BASE><CTAG>NN1</CTAG></TOK>
<TOK><ORTH>connection</ORTH><BASE>connection</BASE><CTAG>NN1</CTAG></TOK>
<TOK><ORTH>and</ORTH><BASE>and</BASE><CTAG>CC</CTAG></TOK>
<TOK><ORTH>an</ORTH><BASE>an</BASE><CTAG>AT1</CTAG></TOK>
<TOK><ORTH>output</ORTH><BASE>output</BASE><CTAG>NN1</CTAG></TOK>



<TOK><ORTH>connection</ORTH><BASE>connection</BASE><CTAG>NN1</CTAG></TOK>
<TOK><ORTH>,</ORTH><BASE>,</BASE><CTAG>,</CTAG></TOK>
<TOK><ORTH>both</ORTH><BASE>both</BASE><CTAG>DB2</CTAG></TOK>
<TOK><ORTH>having</ORTH><BASE>have</BASE><CTAG>VHG</CTAG></TOK>
<TOK><ORTH>the</ORTH><BASE>the</BASE><CTAG>AT</CTAG></TOK>
<TOK><ORTH>same</ORTH><BASE>same</BASE><CTAG>DA</CTAG></TOK>
<TOK><ORTH>exchange</ORTH><BASE>exchange</BASE><CTAG>NN1</CTAG></TOK>
<TOK><ORTH>interface</ORTH><BASE>interface</BASE><CTAG>NN1</CTAG></TOK>
<TOK><ORTH>.</ORTH><BASE>.</BASE><CTAG>.</CTAG></TOK>
</S>

PENN:  Also from 1989 WSJ, but appeared to have data not contained in other sets.

Very similar to the BROWN 1987-1989: set.  Here is an example:

( (S 
    (NP-SBJ-1 
      (NP 
        (NP (NNP Georgia-Pacific) (NNP Corp.) (POS 's) )
        (JJ unsolicited) 
        (ADJP 
          (QP ($ $) (CD 3.19) (CD billion) )
          (-NONE- *U*) )
        (NN bid) )
      (PP (IN for) 
        (NP (NNP Great) (NNP Northern) (NNP Nekoosa) (NNP Corp.) )))
    (VP (VBD was) 
      (VP (VBN hailed) 
        (NP (-NONE- *-1) )
        (PP (IN by) 
          (NP-LGS (NNP Wall) (NNP Street) ))
        (PP (IN despite) 
          (NP 
            (NP (DT a) (JJ cool) (NN reception) )
            (PP (IN by) 
              (NP-LGS (DT the) (NN target) (NN company) ))))))
    (. .) ))



SWBD:  More speech-originated data, it was originally marked with “dysfluency”.  All dysfluent phrases (marked with 
“NS”) were excluded.  These sentences are parsed into clauses by brackets and braces.  Some of the clauses are normal 

structural parts of sentences.  Others are repeats, stutters, or any of the other things that show up in real speech but 

never show up in written text.  The normalization of this set included the removal of phrase repeats, stutters, and many 

interjections.  Here is a fragment from the dataset:

SpeakerA1/SYM ./. 
Okay/UH ./. E_S 
{F Um/UH ,/, } what/WP do/VBP you/PRP do/VB this/DT weekend/NN ?/. E_S 
SpeakerB2/SYM ./. 
{D Well/UH ,/, } {F uh/UH ,/, } pretty/RB much/RB spent/VBD most/JJS of/IN my/PRP$ 
time/NN  either/CC  in/IN  the/DT  yard/NN  or/CC  at/IN  nurseries/NNS  buying/VBG 
stuff/NN for/IN the/DT yard/NN ./. E_S 
SpeakerA3/SYM ./. 
{F Huh/UH ./. } Which/WDT is/VBZ ,/, N_S 
[  wh-/XX  ,/,  d-/XX  ,/,  +  what/WP  do/VBP  ]  you/PRP  [  plan/VB  ,/,  +  have/VB 
planned/VBN ] for/IN your/PRP$ yard/NN ?/. E_S 
SpeakerB4/SYM ./. 
{D Well/UH ,/, } {F uh/UH ,/, } we/PRP just/RB bought/VBD our/PRP$ house/NN ,/, {F 
uh/UH ,/, } last/JJ July/NNP ,/, E_S 
{C and/CC } [ it/PRP 's/BES ,/, + [ [ it/PRP ,/, + it/PRP ,/, ] + the/DT house/NN ] 
is/VBZ ] forty/CD years/NNS old/JJ E_S 
{C so/RB } [ there/EX 's/BES ,/, + there/EX 's/BES ] an/DT established/JJ lawn/NN 
and/CC whatnot/NN ,/, flower/NN beds/NNS ,/, things/NNS like/IN that/DT ,/, E_S 
{C but/CC } [ they/PRP 've/VBP ,/, + {F uh/UH ,/, } they/PRP 've/VBP ] gone/VBN 
a/DT few/JJ years/NNS of/IN neglect/NN ./. E_S 
SpeakerA5/SYM ./. 
Uh-huh/UH ./. E_S 
SpeakerB6/SYM ./. 
{C So/RB ,/, } we/PRP 're/VBP in/IN the/DT process/NN of/IN ,/, {F uh/UH ,/, } 
revitalizing/VBG the/DT whole/JJ situation/NN ./. E_S 
We/PRP 've/VBP got/VBN ,/, {F um/UH ,/, } different/JJ flower/NN beds/NNS in/IN 
front/NN and/CC ,/, {F uh/UH ,/, } [ a/DT window/NN box/NN ,/, + a/DT built/VBN in/
RP window/NN box/NN ,/, ] {F um/UH ,/, } trying/VBG to/TO get/VB some/DT color/NN 
back/RB  in/IN  those/DT  ,/,  get/VB  the/DT  trees/NNS  trimmed/VBN  up/RP  ,/,  {F 
uh/UH ,/, } get/VB rid/VBN of/IN a/DT few/JJ weed/NN problems/NNS and/CC things/NNS 
like/IN that/DT ./. E_S 
SpeakerA11/SYM ./. 
{F Oh/UH ,/, } okay/UH ./. E_S 



Okay/UH ./. E_S 
My/PRP$ wife/NN and/CC I/PRP ,/, we/PRP live/VBP in/IN Dallas/NNP too/RB ,/, E_S 
{C so/RB ./. } N_S 
 

CLEANING THE DATA

A data cleaner was written for each dataset.  This turned out to take up the largest portion of the time spent on this 

project.  The code specific to this project is included in the appendix in order to give an idea of the complexities 

encountered.

First of all, a parser had to be written for each dataset.  Besides all having their own formats, each set had it's own long 

list of exceptions, and mistakes, of course.  For the most part, these exceptions were regularized by a long list of exception 

parsing rules, and then parsed as any other line, but a very small percentage was simply excluded because it was too 

much time was required to regularize so many exceptions.  This was especially true with the BNC set.

Linguistic data has many complexities, each of which had to be tackled one at a time.  One difficulty was detecting word 

fragments and punctuation that should be put together, such as “he  'll”, or “John  's.  Once regularized, they could be 

parsed like any other word.   For the BNC set in particular, I found that word parsing had to be done very specifically, 

parsing each of these differently: newlines, numbers, number ranges, normal words, one-letter words, apostrophe extensions, 

starting quotes, ending quotes, alternate sentence endings, starting punctuation (e.g. “$”, “(“ ). and punctuation without 

letters.  Two states had to be monitored throughout each sentence:

1. IN / OUT of quotes

2. IN / OUT  of parenthesis

This was needed in order to regularize data that had many mistakes and many nested quotes and parenthesis.  For 

simplicity's sake, nesting was not preserved in quotes or parenthesis, but these turned out to be unnecessary anyway.

I wrote a tool called 'posDatacleaner.pl', which takes the data type and file as inputs.  It creates a “.cl” file in 
the same directory as the original file (cl for clean).  The “.cl” files all have the standardized format discussed near the 

beginning.

MERGING THE DATA

Even without considering the possibility of overlap between these datasets, there is a possibility of multiple representation of 

identical sentences, albeit with possibly different tags (even if they were human-checked – we are human, after all).  Now 

that the sentences have all been regularized, they have to be combined into one large set of unique sentences.  It is 



possible that multiple representations of more common grammar structures could actually help, but I think it is more likely 

that the same data coming from different sources would be overrepresented.  The following protocol was used to “unique” 

the dataset:

1. Define a hash key with which to reference the sentence:

a.  start off with the whole sentence as the key

b.  make it lowercase

c.  remove all punctuation

d.  remove all numbers

2. The hash value is the sentence as it originally appeared

3. When there is a collision, proceed through the following steps for each word,tag combo:

a.  unless words match (they could only differ in capitalization), keep word with capitalization switches

b.  else keep words with lowercase

c.  unless tags match, keep both tags, separated by hyphen

d.  only keep one copy of each tag seen for a given word

The tool 'posDatacleaner' was extended to include this functionality.

With this protocol, the dataset will be composed purely of unique sentences, but any sentences that come from multiple 

sources with different tags will contain the information of both.  Using multiple tags to deal with ambiguity was already being 

done in some of the datasets.  The following binary function will be used to determine how “correct” a tag is will do the 

following:

IF training data has tags X-Y on word W, and the classifier returns tags A-B

A-B will be considered a “match” to X-Y   IF:

A=X or A=Y or B=X or B=Y

A similar cross-matching is done with higher numbers of tags.  As long as at one tag matches, the tagging is 

deemed “correct.”  It is hoped that matches that shouldn't have happened will be drowned out as low level noise.  This 

function is the basis of the scoring function in 'posTool.pl'.

I was not able at first to accomplish this cleaning on the entire merged dataset (6,750,151 sentences).  No machine to 

which  I  had  access  could  hold  it  all  in  memory,  so  I  started  by  merging  them  into  200  large  files  (using 

'posDatacleaner'), a step that was not inherently necessary, but helped to simplify the matter.  The next step was 
to make sure every sentence was unique without loading the entire thing into memory.  I decided to put each sentence into 

a file that was named for its first two alphabet letters (lowercase).  I had to remove the string “th” from the beginning of 

any sentence where it occurred (only for the purpose of file naming) just to make sure the “th” file wasn't abnormally 



large.  The rest of the distribution was spread more smoothly.  There were many files that had too few lines to warrant 

their existence, so I merged all those files that had 1-500 sentences into one file, and then I merged all those files that 

had 501-2000 sentences into another file.

Then each of these files was processed so that it only had sentences that were unique by alphabet letters and spaces. 

Numbers, punctuation and capitalization were all discarded when computing uniqueness.  Each file in itself was small enough 

to be loaded into memory.  Now the entire dataset was only composed of unique sentences – 6,710,897 in all.

BUILDING A MODEL

The model first needs to be explained.  Then the stacking algorithm can be described more easily.  If the dataset is tagged 

by all three taggers, then for each word in each sentence we have four tags and the word itself:

M:  output from the “Maximum Entropy” tagger

T:  output from the “Trigrams 'n Tags” tagger

B:  output from the “Brill” tagger

tag:  The supervised answer from the human-checked data

word:  The word that was tagged

There is a “specific” model and a “general” model.  The “specific” model is specific to occurrences of a given word under 

certain conditions, where those conditions are the output of the three taggers.  The “general” model is specific only to the 

output of the three taggers.  The specific model is better because it tells you how that word was marked under similar 

conditions.  If the word in question hasn't been observed, the back-off procedure is to look to the general model, which 

tells you which tagger to trust under the observed conditions, and after that to look to the most commonly observed tag 

considering those same conditions.  The main idea is that the three respective outputs: M, T, and B, represent enough 

information about a given word, that reasonable improvement can be achieved even without considering n-grams.  Besides, 

much n-gram information is inherent in the tagger outputs.  It is possible that n-gram information might be useful for future 

versions of the stacker.  This will be unclear until more experiments can be run.  For now, these “conditions” of the 

observation (M, T, and B), will be expected to produce a gain.

'posTool.pl' was extended to build these models.  The following is an example of how the specific model is built:

BUILDING THE SPECIFIC MODEL

1. INPUT FROM THE DATASET:

it|PRP was|NONE stated|VBN that|IN patients|NNS hope|VBP their|



PRP$ AIDS|NNS will|MD become|VB “a|DT manageable|JJ disease|NN like|
IN diabetes.”|NN

2. GET TAGGER OUTPUTS:

M:    it|PRP  was|VBD  stated|VBN  that|IN  patients|NNS  hope|VBP 
their|PRP$ AIDS|NNP will|MD become|VB “a|DT manageable|JJ disease|NN 
like|IN diabetes.”|VBZ

T:     it|PRP was|VBD stated|VBN that|IN patients|NNS hope|VBP 
their|PRP$ AIDS|NNP will|MD become|VB “a|DT manageable|JJ disease|NN 
like|IN diabetes.”|NN

B:     it|PRP was|VBD stated|VBN that|IN patients|NNS hope|VBP 
their|PRP$ AIDS|NNP will|MD become|VB “a|DT manageable|JJ disease|NN 
like|IN diabetes.”|NN

3.  DEFINE A LOCATION AND FILE UNDER THE MODEL DIRECTORY STRUCTURE:

dir =  specific/M/T/B/   file =  specific/M/T/B/word

Specifically, for the word “diabetes”, the model file would be:

“model/specific/VBZ/NN/NN/diabetes”.

4.  ADD OBSERVATION TO FILE:

Add the present observation to the model file simply by adding the observed tag on a new line.  Again, in the case of 

“diabetes” in the above sentence:

prompt#  echo “NN” >>  specific/VBZ/NN/NN/diabetes

Each time the word diabetes gets the three respective tag outputs  VBZ, NN, and NN, the observed tag will be added to 

that file.

BUILDING THE GENERAL MODEL
The general model is built in a similar way, but will be used differently.  The following is an example of how to build the 

general model using the same sentence:

1. INPUT FROM THE DATASET:

same as above

2. GET TAGGER OUTPUTS:



same as above

3.  DEFINE A LOCATION AND FILE UNDER THE MODEL DIRECTORY STRUCTURE:

almost same as above:    dir =  “general/M/T”    file =  “general/M/T/B”

Specifically, for the word “diabetes,” the model file would be  “model/general/VBZ/NN/NN”

4.  ADD OBSERVATION TO FILE:

Instead of adding the tag observed from the data, here I put the name of the tagger that was correct.  From small early 

experiments I got the idea that the order of priority among the taggers should be (best to worst) should be M, T, B.  In 

the case of the sentence above, M was incorrect (as defined by the observed data), so T is considered the tagger to 

trust under these conditions.  Add the name of this tagger to the model file  (In this part of the code, I used the 

following conventions: “me” = 'Maximum Entropy',  “tnt” = 'Trigrams 'n Tags',  “brill” = 'Brill') :

prompt#  echo “tnt” >>  general/VBZ/NN/NN

Every time this combination of tags is observed together, the “trusted” tagger is added to the general model file.

COMPACTIFYING THE MODEL

(Putting aside the debate over whether “compactify” is a real word)  These model files are way too numerous and bulky 

to be used efficiently.  A protocol will be used to compactify the specific and general models into much smaller files 

containing only essential information.  'posTool.pl' was extended to include this function of compactification.

HOW TO COMPACTIFY THE SPECIFIC MODEL
The essential information contained in the specific model is the knowledge of which tag is most common under the conditions 

represented by the output of the three taggers and the word itself.  Therefore, a single file could be made for each word, 

and each line could list a tag-condition (i.e. The output of all three taggers separated by “_”,  e.g. “VBZ_NN_NN”), and 

the most commonly observed tag under those conditions (e.g. “NN”).

The model is still building, but already, the original specific model file has 15 observations of the word “diabetes”:

prompt#  cat  model/specific/VBZ/NN/NN/diabetes

NN

NN

NN

NN

NN...



(15 lines total, all the same)

Collecting data like this will ensure that if the word “diabetes” is seen in the future, and the three tagger outputs are VBZ, 

NN, and NN  respectively, the stacker will feel confident about assigning “NN,”  Now, to build the compact specific model, 

these steps must be taken on every specific model file:

1.  READ ORIGINAL SPECIFIC MODEL FILE

Read each line in the original specific model file looking for two things:

a. The most commonly observed tag

b. The second most commonly observed tag and its relative incidence with respect to #1.

  (The “conditions” are inherently known from the directory name where the file was found)

If the second most common tag is at least half as common as the first, then the final “authoritative” answer will be that 

the tag is a combination of the two.  In the example of “VBZ/NN/NN/diabetes,” there is no second-most common tag, 

but if a word had “VBZ” as it's most common tag, and “NN” as the second most common, and “NN” was observed at 

least half as many times as “VBZ”, then the final authoritative answer would be “VBZ-NN”.

2. DEFINE A LOCATION FOR THE COMPACT SPECIFIC MODEL FILE UNDER THE MODEL DIRECTORY STRUCTURE:

First, for the sake of not overloading directory listing functions, find the first two alphabet letters (e.g. “di”) in the word, 

and use them as a subdirectory.  The compact specific model file for the word “diabetes” will be:

file =  compact/di/diabetes

3.  CREATE A KEY

This key will provide a marker for the line that we are about to add to the compact specific model file.  This marker 

makes us able to find this answer at a later point when we observe these same conditions again.  In this case, the key is 

“VBZ_NN_NN”.

4.  ADD OBSERVATION TO FILE:

For “diabetes”, we would add a line containing our key and our authoritative answer for the given conditions:

prompt#  echo “VBZ_NN_NN    NN”  >>  compact/di/diabetes

In the future, when we again observe the word “diabetes”, and the respective outputs of the three taggers M, T, and B, 

are  VBZ, NN, and NN, this stacker will give the answer “NN.”  As you can imagine, even in situations where all three 

taggers are wrong, there is a chance of getting the right answer.  It is at least arguable that there is enough information 

contained in the key and filename to represent a lot of the English language.



For example, the compact specific model file for “diabetes” in the model I am presently building has output from two sets 

of conditions so far:

prompt#  cat  model/compact/di/diabetes
VBZ_NN_NN    NN
NNS_NN_NN    NN

HOW TO COMPACTIFY THE GENERAL MODEL

The general model files are going to be compactified into one big file.  The method is similar to the one above.  It must 

be iterated upon every general model file.

1.  READ ORIGINAL GENERAL MODEL FILE,  FIND MOST COMMON OBSERVATION

Read each line in the model file looking for one thing:  The most commonly trusted tagger under the given conditions 

represented  by  the outputs  (and  directory  names) “M/T/B.”  For  above case,  the original  general  model  file  is 

“general/VBZ/NN/NN”.  It contains 540 observations.  The observations are the names of the most trusted tagger in each 

situation.  If the most common observation under these conditions is “tnt”, then our authoritative answer will simply be: 

“Trust the output T from the 'tnt' tagger”.

2. CREATE A KEY

same as above

3.  ADD OBSERVATION TO FILE:

Here we print the key “VBZ_NN_NN” and the authoritative answer “tnt” into the compact general model file.  There is only 

one of these, and it is called “model/compact/general”:

prompt# echo “VBZ_NN_NN    tnt”  >>  model/compact/general

USING THE MODEL

The tool 'posTool.pl' was extended to also use the stacker as a tagger.  The interface to the stacker is the same as 
for the other three taggers.  It is just as easy to use.  Here's how it works:



1.  INPUT TEXT TO TAGGERS

An input phrase is taken in the form of normal text.  It is stripped of most punctuation.  A few experiments were done on 

all three taggers and it was shown early on that the only mark that increases accuracy is the apostrophe.  All other 

punctuation marks interfered somehow.  Once the text (which can come from the command line or a file), is cleaned, it is 

split into sentences, and each sentence is passed one at a time to each of the three taggers.

2.  ANALYZE TAGGER OUTPUTS

Each word of each sentence is then looked at one at a time.  Knowing the output of each tagger, and the word itself, the 

compact specific model file is retrieved.  If we were to come across the word “diabetes,” and the respective outputs of the 

three taggers M, T, and B, were  VBZ, NN, and NN, the needed model file would be “compact/di/diabetes”, and a 

simple grep of our key “VBZ_NN_NN” on that file would reveal our authoritative answer, if the file exists.  In this case it 

was observed, so the file does indeed exist:

prompt#  grep  VBZ_NN_NN  compact/di/diabetes
NN

A simple grep gives us this needed answer, but instead of using a grep, the whole file is read.    This is also where the 

most “common” tag is found by a straight count.  This tag is stored in case it is needed in step 4 below.  This is all 

handled behind the scenes by 'posTool.pl'.  This step is done for each word until the whole sentence is tagged with 
authoritative outputs.

3.  BACK-OFF TO GENERAL MODEL

If step 2 doesn't produce an answer for a given word, the general model is used.  In this case, a simple grep of our key 

on the compact general model file is all that is needed.  If a grep of our key on that file reveals the answer “tnt”, then 

the stacker puts its trust in the output of the tnt tagger, which output “NN” for the word “diabetes” above.  If these 

conditions were never observed (not likely) or if these conditions were observed, but all taggers were wrong (more likely), 

then there will be no line in the compact general file with our key.  You will have to back-off to the “common” tag.

4.  BACK-OFF TO COMMON TAG

In this case, use the most commonly observed tag from step 2 is used as the authoritative answer.

5.  LAST-DITCH BACK-OFFS

There will be cases where there is no specific model file for a given word, and no key in the general file.  In such cases, 

trust will be accorded first to “ME”, then to “TNT”, and finally to “Brill”.  If none of them have an answer, “NONE” will 

be applied.



TESTING

The scope of this project is large and could not fully be explored in so short a time, but a good basis was laid for future 

improvements, and early experiments show that the stacker is providing useful answers.  For example, using a twist on a 

well-known sentence, these are actual outputs of the three taggers, and then the last one is from the stacker (using a 

small model):

prompt#  posTool.pl -t "the quick brown fox jumped all over the Indian tiger's 
second half-brother once removed" --tag me
OUTPUT: the|DT quick|JJ brown|NN fox|NN jumped|VBD all|DT over|IN the|DT Indian|NN 
tiger's|NN-POS second|JJ half-brother|NN once|RB removed|VBD 

prompt#  posTool.pl -t  "the quick brown fox jumped all over the Indian tiger's 
second half-brother once removed" --tag tnt
OUTPUT: the|DT quick|JJ brown|JJ fox|NN jumped|VBD all|DT over|IN the|DT Indian|JJ 
tiger's|NN-POS second|JJ half-brother|NN once|RB removed|VBN 

prompt#  posTool.pl -t "the quick brown fox jumped all over the Indian tiger's 
second half-brother once removed" --tag brill
OUTPUT: the|DT quick|JJ brown|JJ fox|NN jumped|VBD all|DT over|IN the|DT Indian|NN 
tiger's|NN-POS second|JJ half-brother|NN once|RB removed|VBD

prompt#  posTool.pl -t "the quick brown fox jumped all over the Indian tiger's 
second half-brother once removed" --model model
OUTPUT: the|DT quick|JJ brown|JJ fox|NN jumped|VBD all|DT over|IN the|DT Indian|JJ 
tiger's|NN-POS second|JJ half-brother|NN once|RB removed|VBN-VBD 

Even though “ME” was originally the most trusted tagger, the stacker disagreed with ME's choice on the words “brown,” 

and “Indian”, and rightly so.  The stacker trusted its own models and found a better answer.



SMALL EXPERIMENTS:

A few experiments have been done to test the effectiveness of the methods laid out in this paper.  Small ones were done 

first so that they could be completed quickly.  Only a few days were required.  The tagged sentences chosen for training 

and testing were chosen essentially at random from across the different original datasets and were not mixed (i.e. None of 

the training sentences were in the test sets).  The number of sentences in each are listed below.  Underneath are listed 

the total number of words in each test set, and the amount of words tagged correctly by each tagger, listing the Stacker 

first.

EXPERIMENT 1:
Training set:  1000 sentences

Test set: 200 sentences

Total Words Stacker ME TnT Brill

3452    3032    2922    2991    2959

EXPERIMENT 2:
Training set:  10000 sentences

Test set: 2000 sentences

Total Words Stacker ME TnT Brill

36927   33416   32249   32736   32457

EXPERIMENT 3:
Training set:  100000 sentences

Test set: 20000 sentences

Total Words Stacker ME TnT Brill

375943  347106  330227  334641  331584

What is most surprising to me is that the Maximum Entropy tagger comes in last each time.  Tags'n'Trigrams seems to 

have the best single approach, but only slightly better than Brill.  These numbers do show that taking the best of all three 

can create a tagger that functions slightly better than any of its constituents.  An experiment on a larger model is described 

next.



LARGE EXPERIMENTS

Once a large model had been built, more meaningful tests could be done.  The model took weeks to build.  But first, 

some recap about the data:   The datasets had been gathered into multiple directories with two-letter names.  These two 

letters represent the first two letters of the text in the tagged sentences.  The purpose was so that each list of sentences 

could be make unique without running out of memory.  Besides the fact that the data is organized this way, I believe it is 

reasonable to assume that that these sentences are distributed randomly enough for testing the POS-taggers.

The only exceptions to the two-letter naming scheme were these two sets:

0-500

500-2000

These two sets are each a concatenation of many sets.  When the sentences were originally distributed into these files, 

most of them were relatively short.  All sets that had less than 500 lines were put into the first set “0-500”, and all sets 

with between 500 and 2000 sentences were put into the second set “500-2000”.

Here are the sizes (in sentences) of all the datasets:
     36507 0-500      21866 DI       8003 GI       4089 KI      4992 PH       6916 VI
     33995 500-2000      39508 DO       2752 GL       2018 KN       4878 PI       3573 VO
     16862 AB       9992 DR      18835 GO      30900 LA       9669 PL      17461 WA
     31505 AC      13363 DU      12210 GR      22008 LE      14988 PO     152542 WE
     16346 AD      61515 EA       4253 GU      23189 LI      35964 PR     165602 WH
     40164 AF      38275 EB      29967 HA      22721 LO       7708 PU      44444 WI
     13650 AG      90565 EC     256962 HE       4296 LU       5599 QU      14936 WO
      7711 AH      44501 ED      38711 HI      58533 MA      12334 RA       2187 WR
      3402 AI      27122 EE      67113 HO       3447 MC      48686 RE      48681 YE
     83903 AL      50994 EF       5475 HU      24656 ME      13442 RI      98877 YO
     28076 AM      26299 EG      16372 IA      19593 MI      20595 RO
    225305 AN      18124 EH       5723 IB       2299 MM       5248 RU
     18012 AP      40650 EI      18180 IC      47758 MO      21880 SA
     24117 AR       6792 EJ      38093 ID      86837 MR       7733 SC
     99843 AS       4546 EK       2767 IE       3523 MS      38376 SE
    115797 AT      37790 EL      90923 IF       9963 MU     121515 SH
      5776 AU      51556 EM       6314 IG      18897 MY      31527 SI
      4451 AV      61038 EN      24970 IH       7871 NA       2568 SL
      5757 AW      29676 EO       3698 II      30998 NE       3662 SM
      3743 AY      64621 EP       3627 IJ       7276 NI     117699 SO
     19130 BA       5839 EQ       9824 IK     112233 NO      10154 SP
     47635 BE     155007 ER      17744 IL       2175 NU      36131 ST
      7133 BI     109925 ES      45077 IM       3490 OB      32579 SU
      5438 BL      43321 ET     276059 IN       2091 OC       2821 SW
     22351 BO      17093 EU       2238 IO      21276 OF      13470 TA
     17706 BR      43986 EV       3938 IP      27026 OH      16924 TE
    212982 BU      21413 EW      14153 IR       3287 OK      99341 TH
     23140 BY      13256 EX     147412 IS       3142 OL       6745 TI
     31618 CA      97542 EY     304519 IT       2236 OM      53353 TO
      7466 CE      10938 FA       2654 IU      94936 ON      18988 TR
     25305 CH      10257 FE      15196 IV       4805 OP       4161 TU
      4549 CI      31920 FI      37134 IW      14082 OR      15223 TW
     11503 CL       4307 FL      12761 JA       8545 OS       2012 TY
     68815 CO      80790 FO       5750 JE      15131 OT      34705 UN
      8237 CR      25498 FR      14345 JO      20441 OU       2890 UP
      7148 CU      10666 FU      18736 JU       7104 OV      21264 US
     15802 DA       5875 GA       4258 KA      22595 PA       3606 VA
     33709 DE      16691 GE       7092 KE      30109 PE       5128 VE



The total number of sentences is 6,710,897.  Most were used for training.  A total of 101,252 sentences were used for 

testing.  The following tests were left out during training and were used for testing:

  sentences / set
13650   AG
8237   CR
5875   GA
3938   IP
7092   KE
19593   MI
3490   OB
4992   PH
16924   TE
17461   WA

As the large model built, there were various problems.  The large size of the dataset made it prohibitively difficult to track 

down every build failure, and there were numerous ones.  Most issues were resolved, but some of the data did not make it 

into the model for one reason or another.  It would be reasonable to assume that more than 90% of the over six million 

sentences were incorporated into the model.  None of them were used twice.

The results on the next page are listed in several columns, the first of which is the name of the dataset.  Next is the total 

number of words.  It is impossible for any of the taggers to reach 100% because some of the words in the dataset were 

tagged with “NONE”.  These were counted as words, but were never counted as a correct match.  Next is the number of 

correct matches (in words) for the Stacker.  Next is the percentage correct for the Stacker.  After that come similar fields 

for the other three taggers: Max Entropy, Trigrams'n'Tags, and Brill:

 



The trend that was seen in the small experiments holds true for the large ones as well.  The stacked tagger (Stacking of 

the other three taggers) consistently does better than any tagger on its own.

The order of accuracy among the taggers is also maintained.  After the stacker, Trigrams'n'Tags next best.  Then comes 

Brill, leaving Max Ent for last.  This is definitely a surprise.  Before any of the tests were done, I thought the order would 

be Max-Ent, Tnt, Brill.  These taggers were treated as black boxes.  They were not specifically trained against the data. 

It is possible that the order would have been different if they had been.

CONCLUSION

The stacking algorithm described in this paper is an effective way to combine the output of multiple POS-taggers and 

improve accuracy over a given tagger on its own.  It's overall accuracy was 94.26%, a significant jump above the second 

place accuracy 89.30%.  If pure accuracy is desired, this algorithm is excellent.  The drawback is the amount of time 

required for model building.  Despite this drawback, this method could find applications in many other fields.

SET WORDS STACKER MAX ENT TNT BRILL

AG.results 279788 266061 95.09% 250996 89.71% 252677 90.31% 250971 89.70%
CR.results 153143 143584 93.76% 134677 87.94% 136519 89.14% 135280 88.34%
GA.results 109612 103009 93.98% 96769 88.28% 98088 89.49% 97547 88.99%
IP.results 62151 59299 95.41% 53976 86.85% 54674 87.97% 53745 86.47%
KE.results 124589 117631 94.42% 110083 88.36% 111987 89.89% 111134 89.20%
MI.results 359630 337789 93.93% 315186 87.64% 320049 88.99% 317082 88.17%
OB.results 72352 68776 95.06% 64058 88.54% 64641 89.34% 64101 88.60%
PH.results 92402 86820 93.96% 81547 88.25% 82757 89.56% 81869 88.60%
TE.results 297573 279489 93.92% 261273 87.80% 264078 88.74% 262393 88.18%
WA.results 276989 260787 94.15% 240794 86.93% 247162 89.23% 245028 88.46%

TOTALS 1828229 1723245 94.26% 1609359 88.03% 1632632 89.30% 1619150 88.56%


